
firstdata.com 1

First Data Global Gateway
Web Service API
Integration Guide

Version 9.0
March 2015

IMPORTANT: Entities that are storing, processing or transmitting cardholder data on behalf of merchants for
payment processing transactions or otherwise handling cardholder data, should contact the First Data Global
Partner Management team (GPM) at GPM@firstdata.com to discuss rules and regulations associated with direct
integration with the First Data Global Gateway.

©2010 First Data Corporation. All rights reserved. This document contains confidential and proprietary information of First Data
Corporation. You may not disclose, copy or use any part of these materials without the prior written consent of First Data Corporation. All
trademarks, service marks and trade names used in this presentation are the property of their respective owners.

mailto:GPM@firstdata.com

WEB SERVICE API INTEGRATION GUIDE

Contents

WEB SERVICE API INTEGRATION GUIDE .. 1

1 Required Data .. 6

2 How the Web Service API Works .. 7

2.1 Getting Started ... 8
2.2 LogIn .. 8
2.3 Enter your ten (10) digit Store Number or User ID .. 8
2.4 Password Guidelines .. 9

3 Supported Tools .. 10

4 Sending Transactions to the Gateway ... 11

5 Building Transactions in XML .. 13

5.1 Credit Card Transactions .. 13
5.1.1 Sale ... 14
5.1.2 PreAuth (Authorize Only in the Virtual Terminal) ... 16
5.1.3 PostAuth (Ticket Only in the Virtual Terminal) ... 19
5.1.4 ForceTicket ... 20
5.1.5 Return ... 23
5.1.6 Credit .. 24
5.1.7 Void ... 26

5.2 Check Transactions .. 27
5.2.1 Sale ... 28
5.2.2 Return ... 30
5.2.3 Void ... 31

5.3 Calculating Shipping and Tax ... 32
5.3.1 Calculate Shipping .. 33
5.3.2 Calculate Tax .. 33

6 Additional Web Service Actions ... 35

6.1 Recurring Payments ... 35
6.1.1 Install Recurring Payment ... 35
6.1.2 Modify Recurring Payment .. 37
6.1.3 Cancel Recurring Payment .. 38

6.2 SystemCheck ... 39

7 XML Tag Reference ... 40

7.1 CreditCardTxType .. 40
7.2 CreditCardData .. 40
7.3 CreditCard3DSecure .. 41
7.4 Payment ... 42
7.5 TransactionDetails .. 42
7.6 Billing ... 44
7.7 Shipping ... 45
7.8 TeleCheckTxType .. 46
7.9 TeleCheckData .. 46
7.10 CalculateShipping .. 47

7.11 CalculateTax .. 47
7.12 RecurringPayment .. 47

8 Building a SOAP Request Message ... 50

9 Reading the SOAP Response Message ... 51

9.1 SOAP Response Message ... 51
9.1.1 Transaction ... 51
9.1.2 Action .. 52

9.2 SOAP Fault Message ... 53
9.2.2 SOAP-ENV:Client ... 54

10 Analyzing the Transaction Response .. 56

10.1 Approval Response .. 56
10.2 Failure Response ... 58

11 Building an HTTPS POST Request ... 62

11.1 PHP .. 63
11.1.1 Using the cURL PHP Extension .. 63
11.1.2 Using the cURL Command Line Tool .. 64

11.2 ASP .. 64

12 Establishing an SSL connection .. 66

12.1 PHP .. 66
12.1.1 Using the PHP cURL Extension .. 66
12.1.2 Using the cURL Command Line Tool .. 67

12.2 ASP .. 67

13 Sending the HTTPS POST Request and Receiving the Response 68

13.1 PHP .. 68
13.1.1 Using the PHP cURL Extension .. 68
13.1.2 Using the cURL Command Line Tool .. 68

13.2 ASP .. 69

14 Using .NET Framework ... 70

14.1 Prerequisites .. 70
14.2 Creating Web Service Reference Classes in .NET ... 71
14.3 Writing the .NET Client ... 74

15 Using a Java Framework... 77

15.1 Axis Framework.. 77
15.1.1 Client Certificate Configuration .. 77
15.1.2 Generating Client Stubs .. 77
15.1.3 Writing the Axis Client ... 78

16 SSL and HTTP Authentication .. 81

16.2 Spring Web Services .. 81
16.2.1 Client Configuration ... 81
16.2.2 Writing the Spring Client .. 83
16.2.3 SSL/Certificate Configuration .. 88

17 Customer Test Environment (CTE) .. 89

18 The Tax Calculator .. 90

19 Shipping Calculator ... 91

20 Troubleshooting .. 94

20.1 Merchant Exceptions .. 94

20.2 cURL Login Error Messages .. 99
20.3 Java Client Login Error Messages .. 100

21 Installing the Client Certificate ... 101

22 Glossary ... 108

1 Introduction

The First Data Global Gateway Web Service API is an Application Programming Interface, which
allows you to connect your application with the First Data Global Gateway. Using the Web
Service API, you can seamlessly accept credit card and check payments in your application.

Note: If you store or process cardholder data with your application, you must ensure that,
your application meets the Payment Card Industry Data Security Standard (PCI DSS)
requirements. Depending on transaction volume, you may be required to have your
application audited by a Qualified Security Assessor.

The First Data Global Gateway Web Service API is a SOAP-based web service. Some of the
advantages of offering integration using a web service include:

¶ Platform Independence ï Any application that can send and receive SOAP messages
can communicate with the Web Service API. Because the Web Service API is built using
open standards, you can choose any technology that suits your needs (e.g. J2EE, .NET,
PHP, ASP, etc.) for integrating with the First Data Global Gateway.

¶ Ease of Integration ï The application builds a SOAP request message which encodes
your transaction, sends it via HTTPS to the web service, and waits for a SOAP response
message. The response contains your transactionôs status. Since SOAP and HTTPS are
designed to be lightweight protocols, building requests and parsing responses is a
straightforward. Furthermore, rarely do you have to do this manually, since there are a
number of libraries available in various technologies. Building a SOAP request and
handling the response is reduced to a few lines of code.

Note: Integrators of the First Data Global Gatewayôs Web Service API should
have a working knowledge of Web Service, SOAP and XML; in addition to a full
understanding of how to integrate data into an application or web site. All
supporting software needed to support Web Service API should be installed in a
development environment prior to Web Service implementation. The Integrator
must be proficient in their selected programming language.

¶ Security ï All communication between your application and First Data Global Gateway
Web Service API is SSL-encrypted. Your application has a client certificate, which
identifies it uniquely with the web service. The Web Service API holds a server certificate,
which your application checks to ensure that it is communicating with the Web Service
API. The Web Service also requires HTTP basic authorization (user name and password)
in order to communicate with the web service. These security mechanisms guarantee
that the transaction data sent to First Data Global Gateway Web Service API stays
private and is available only to your application.

This document will assist you in integrating your application with the Web Service API, and
provide a brief summary of the Web Service API solution feature set.

1 Required Data

This section describes the data required for communicating securely with the Web Service API.
The following checklist provides an overview enabling you to ensure that you have received the
whole set when registering your application for the First Data Global Gateway:

¶ Store ID ï Your store ID, assigned by First Data.

¶ User ID and Password ï The user ID and password required for basic authorization with
the Web Service API. The user ID is in the format WS<store_ID>._.1. For example, if
your store ID is 111920, your user ID is WS111920._.1. This information is in the.
WS<store_ID>._.1.auth.txt file.

¶ Client Certificate p12 File ï The client certificate stored in a p12 file, named in the
format WS<store_ID>._.1.p12. For example, if your store ID is 111920, your p12 file is
named WS111920._.1.p12. This file is used for authenticating the client with the First
Data Global Gateway. For connecting with Java, you need a ks file, for example
WS111920._.1.ks.

¶ Client Certificate Installation Password ï The password required for installing the p12
client certificate file. This information is in the WS<store_ID>._.1.p12.pw.txt file.

¶ Client Certificate Private Key ï The private key of the client certificate stored in a key
file, named in the format WS<store_ID>.key. Depending on your choice of tools, this may
be required for authenticating with the Web Service API.

¶ Client Certificate Private Key Password ï The password required for the private key,

named in the format ckp_<creation_timestamp>. For example, this might be

ckp_1193927132. Depending on your choice of tools, this may be required for
authenticating with the Web Service API. This information is in the
WS<store_ID>._.1.key.pw.txt file.

¶ Client Certificate PEM File ï The client certificate stored in a pem file, named in the
format WS<store_ID>._.1.pem. For example, if your store ID is 111920, your pem file is
named WS111920._.1.pem. This file is used for authenticating the client with the First
Data Global Gateway. Depending on your choice of tools, this may be required for
authenticating with the Web Service API instead of the p12 file.

Note: These files are delivered in the .tar.gz format, which can be opened using recent versions
of WinZip or most other archive applications. The certificate is valid for 10 years and will need to
be renewed before the expiration date.

To renew certificate call the 24/7 GSD Help Desk at 888-477-3611.

2 How the Web Service API Works

The following section describes the process of performing a credit card transaction through the
Web Service API.

In most cases, a customer starts the overall communication process by buying goods or services
with her credit card in your online store. Your store sends a credit card transaction to the First
Data Global Gateway using the Web Service API. Having received the transaction, the First Data
Global Gateway forwards it to the credit card processor for authorization. Based on the result,
your online store receives an approval or an error response from the Web Service API. This
means that you only need to be able to communicate with the First Data Global Gateway Web
Service API in order to accept payments.

Web service interfaces are designed using the Web Service Definition Language (WSDL). The
WSDL file for the Web Service API is located here:

https://ws.firstdataglobalgateway.com/fdggwsapi/services/order.wsdl

You must install the client certificate to access the WSDL file, for example, in a web browser.
See 21 Installing the Client Certificate on page 101 for instructions on installing the client
certificate.

After installing the client certificate, you can access the WSDL file. To access the WSDL file,
follow these steps:

1. Open a Microsoft Internet Explorer window and enter the URL for the WSDL in the
Address field.

2. After requesting the URL, the server will ask your browser to supply the client certificate
ensure sure that it is talking to your application correctly. Since you have installed the
certificate in the previous steps, you are seamlessly transferred to the server. Then, the
First Data Global Gateway Web Service API sends its server certificate and the browser
verifies that it comes from a trusted source. Again, this is done automatically without
prompting you for any input. A secure connection is established and all data transferred
between your application and the First Data API Web Service is SSL-encrypted.

3. The Web Service API WSDL file is displayed.

Note: Your user ID and password are not required to view the WSDL but they are
required to access the First Data Global Gateway Web Service API.

https://ws.firstdataglobalgateway.com/

The WSDL file defines the operations offered by the Web Service API. It defines
the request, response parameters, and call to operations. The First Data Global
Gateway Web Service API WSDL file defines one operation, FDGGWSApiOrder,
called by sending a SOAP request to the following URL:

https://ws.firstdataglobalgateway.com/fdggwsapi/services

This operation takes an XML-encoded transaction as a request and returns an XML-encoded
response.

Depending on the tools you use to integrate with the Web Service API, you may need to provide
the URL for the WSDL file. If so, you must tell your tool that the communication is SSL-enabled,
provide your client certificate, and accept the server certificate as trusted. The process for this
depends upon your tool. Consult the documentation for your tool for details.

The following chapters will guide you in setting up your store for building and performing custom
credit card transactions.

2.1 Getting Started

After an account is loaded into our system, a merchant receives an automated Web Service API
Welcome Email from ósecure@secure.linkpt.netô. It outlines the steps needed to complete the
activation process for your account. This email contains the following information required to log
in:

¶ DBA Name

¶ Store Name - a 6 or 10 digit numeric value

¶ User-ID

¶ Temporary Password - call the Support Desk at 888-477-3611 to receive your password.
It is required to login to the site, process transaction reports, and perform administrative
functions.

¶ Virtual Terminal URL - https://secure.linkpt.net/lpc/servlet/LPCLogin

2.2 LogIn

2.3 Enter your ten (10) digit Store Number or User ID

¶ Enter the Temporary Password

¶ Click Login

¶ Click Accept Agreement on the Global Gateway User Agreement

Note: Temporary passwords are valid for only thirty (30) minutes after they are issued.
We suggest you change your password regularly. Security specialists recommend
merchants avoid using common words or numbers as passwords. Avoid words or
numbers that might be associated with oneôs name or date of birth.

2.4 Password Guidelines

Password guidelines are as follows:

¶ Password length must be a minimum of eight (8), a maximum of fifteen (15) characters,
and contain at least one (1) letter and one (1) number.

¶ Passwords expire every ninety (90) days

¶ Replaced passwords cannot be equivalent to any of the previous four (4) passwords for
your account.

¶ After six (6) consecutive failed login attempts, a temporary (30) thirty minute account
lockout will occur.

Once logged in, a merchant can begin processing transactions.

3 Supported Tools

The First Data Global Gateway Web Service API uses HTTPS and SOAP to communicate with
your applications. As such, it is completely platform independent. The choice of languages,
frameworks, or tools to integrate with the Web Service API is up to you.

First Data has tested the Web Service API with the following tools:

¶ PHP 5.2.9

¶ ASP

¶ .NET Framework

¶ Axis Framework 2-1.3

¶ Spring-WS 1.5.7

While you can use any tools to integrate with the API, these tools are First Data has tested.
Integrating with the First Data Global Gateway Web Service API using other tools is outside the
scope of this document.

4 Sending Transactions to the Gateway

This section describes the basic steps to take place when sending transactions to the First Data
Global Gateway.

¶ The customer initiates checkout in the online store.

¶ The online store displays a form asking the customer to provide a credit card number and
the expiration date.

¶ The customer enters and submits the data.

¶ The online store receives the data and builds an XML document encoding a Sale
transaction, which includes the data provided by the customer and the total amount to be
paid by the customer.

¶ After building the XML Sale transaction, the online store wraps it in a SOAP message,
which describes the Web Service operation to be called with the transaction XML being
passed as a parameter.

¶ The online store generates an HTTP POST request containing the soap message and
sets the HTTP basic authorization headers.

¶ The online store establishes an SSL connection by providing the client and server
certificate.

¶ The online store sends the HTTP POST request to the First Data Global Gateway Web
Service API and waits for an HTTP response.

¶ The Web Service API receives the HTTPS request and parses the authorization
information provided by the store in the HTTP headers.

¶ Having authorized the store, the Web Service API parses the SOAP message contained
in the HTTP request body, triggering the call to the transaction operation.

¶ The First Data Global Gateway Web Service API performs the transaction processing,
builds an XML response document, wraps it in a SOAP message, and sends the SOAP
message back to the client in the body of an HTTP response.

¶ The online store receives the HTTP response.

¶ Depending upon the data contained in the XML response document, the online store
displays the approval or error message.

While this example describes the case of a Sale transaction, other transactions follow the same
process.

Your application performs the following steps in order to submit transactions and analyze the
result:

¶ Build an XML document encoding your transactions.

¶ Wrap that XML document in a SOAP request message.

¶ Build an HTTP POST request with the information identifying your store provided in the
HTTP header and the SOAP request message in the body.

¶ Establish an SSL connection between your application and First Data Global Gateway
Web Service API.

¶ Send the HTTP POST request to the First Data Global Gateway Web Service API and
receive the response.

¶ Read the SOAP response message out of the HTTPS response body.

¶ Analyze the XML response document contained in the SOAP response message.

The following chapters describe the information you need to perform these steps in detail and
guide you through the process of setting up your application to perform transactions.

5 Building Transactions in XML

This chapter describes the XML formats for the submitting to the First Data Global Gateway Web
Service API. After encoding the transaction in XML, the message is wrapped in SOAP envelope
and submitted to the Web Service API.

While the tools you use to generate your request messages may allow you to avoid working with
raw XML, you still need a basic understanding of the XML format in order to correctly build the
XML transactions.

Credit card and check transactions are contained in the fdggwsapi:FDGGWSApiOrderRequest
element.

Note: The First Data Global Gateway Web Service API only accepts ASCII characters. The
Order ID cannot contain the following characters: &, %, /, or exceed 100 characters in length.

The Order ID will be restricted in such a way so that it can only accepts alpha numeric (a-z, A-Z,
0-9) and some special characters for merchants convenience. The allowed special characters
are given below.

¶ Hash (#)

¶ Underscore (_)

¶ Hyphen (-)

¶ At the rate (@)

¶ Dot (.)
¶ Colon (:)
¶ Space ()

5.1 Credit Card Transactions

Regardless of the transaction type, the basic XML document structure of a credit card
transaction is as follows:

<fdggwsapi:FDGGWSApiOrderRequest

 xmlns:v1=

òhttp:// secure.linkpt.net / fdggwsapi/schemas_us /v1ò

 xmlns:fdggwsapi=

ñhttp:// secure.linkpt.net / fd ggwsapi/schemas_us /fdggwsapi ">

 <v1:Transaction>

 <v1:CreditCardTxType>...</v1:CreditCardTxType>

 <v1:CreditCardData>...</v1:CreditCardData>

 <v1:Payment>...</v1:Payment>

 <v1:TransactionDetails>...</v1:TransactionDetails>

 <v1:Billing>...</v1:Billing >

 <v1:Shipping>...</v1:Shipping>

 </v1:Transaction>

</ fdggwsapi:FDGGWSApiOrderRequest >

CreditCardDataTXType, CreditCardData, and Payment elements are mandatory for all credit
card transactions. The other elements depend on the transaction type. The content depends on
the type of transaction.

See 7 XML Tag Reference on page 40 for details of all required and optional elements
valid for submission for credit card transactions.

5.1.1 Sale

The following code is a sample of a Sale transaction using the minimum required elements:

<fdggwsapi:FDGGWSApiOrderRequest

 xmlns:v1=

òhttp://secure.linkpt.net/fdggwsapi/schemas_us/v1 ò

 xmlns:fdggwsapi=

ñhttp://secure.linkpt.net/fdggwsapi/schemas_us/fdggwsapi ">

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:Type>sale</v1:Type>

 </v1:CreditCardTxType>

 <v1:CreditCardData>

 <v1:CardNumber>41 11111111111111</v1:CardNumber>

 <v1:ExpMonth>12</v1:ExpMonth>

 <v1:ExpYear>12</v1:ExpYear>

 </v1:CreditCardData>

 <v1:Payment>

 <v1:ChargeTotal>19.95</v1:ChargeTotal>

 </v1:Payment>

 <v1:TransactionDetails>

 <v1:Recurring>No</v1:Recurring>

 </v1:TransactionDetails>

 </v1:Transaction>

</fdggwsapi:FDGGWSApiOrderRequest>

/ fdggwsapi:FDGGWSApiOrderRequest >

The following table lists the required and optional fields for the Sale transaction. (v1:Billing,
v1:Transaction details and v1:Shipping are optional)

Several situations that may occur which can cause a merchantôs transactions to be
downgraded.

1. Failure to input the required data filed elements
2. Swiping a credit card in a designated CNP environment
3. Failure to input data into the Tax and PO# field

The FDGG accepts $0.00 transactions for processing from Visa, MasterCard, JCB, and Discover
credit cards. The primary purpose for submitting a $0.00 ñchargetotalò amount with a billing
address is for credit card verification (not lost or stolen), or AVS (address match/mismatch). A
$0.00 Authorization does not ñholdò funds on the customerôs account, cannot be submitted for
settlement, nor have a Return transaction processed against it.

All paths are relative to fdggwsapi:FDGGWSApiOrderRequest/v1:Transaction.

http://secure.linkpt.net/fdggwsapi/schemas_us/v1
http://secure.linkpt.net/fdggwsapi/schemas_us/fdggwsapi

FIELD REQUIRED

v1:CreditCardTxType/

 v1:Type Required

v1:CreditCardData/

 v1:CardNumber Required if v1:TrackData is not submitted.

 v1:ExpMonth Required if v1:TrackData is not submitted.

 v1:ExpYear Required if v1:TrackData is not submitted.

 v1:CardCodeValue Optional

 v1:CardCodeIndicator Optional

 v1:TrackData Required if v1:CardNumber is not submitted.

v1:CreditCard3DSecure/

 v1:PayerSecurityLevel Required for 3D Secure transactions

 v1:AuthenticationValue See 7.3 CreditCard3DSecure for details.

 v1:XID See 7.3 CreditCard3DSecure for details.

v1:Payment/

 v1:ChargeTotal Required ï Can be Ó $0.00

 v1:SubTotal Optional

 v1:VATTax Optional

 v1:Shipping Optional

v1:TransactionDetails/

 v1:UserID Optional

 v1:InvoiceNumber Optional

 v1:OrderId Optional
Note ï Only certain special characters are valid. See note above for

characters allowed

 v1:Ip Optional

 v1:ReferenceNumber Optional

 v1:TDate Optional

 v1:Recurring Required

 v1:TaxExempt Optional

 v1:TerminalType Optional

 v1:TransactionOrigin Required

 v1:PONumber Optional

 v1:DeviceID Optional

FIELD REQUIRED

v1:Billing/ To prevent the possibility of downgrading, some Billing data is required
for all MOTO & ECI transactions!

 v1:CustomerID Optional

 v1:Name MOTO & ECI: Required Retail: Optional

 v1:Company Optional

 v1:Address1 MOTO & ECI: Required Retail: Optional

 v1:Address2 Optional

 v1:City MOTO & ECI: Required Retail: Optional

 v1:State MOTO & ECI: Required Retail: Optional

 v1:Zip MOTO & ECI: Required Retail: Optional

 v1:Country MOTO & ECI: Required Retail: Optional

 v1:Phone Optional

 v1:Fax Optional

 v1:Email Optional: But is required to have receipts emailed to customer and

administrator

v1:Shipping/

 v1:Type Optional

 v1:Name Optional

 v1:Address1 Optional

 v1:Address2 Optional

 v1:City Optional

 v1:State Optional

 v1:Zip Optional

 v1:Country Optional

These elements must be submitted in the order defined in the XSD file: Transaction,
CreditCardTxType, CreditCardData, and Payment.

5.1.2 PreAuth (Authorize Only in the Virtual Terminal)
A Pre-Auth transaction authorizes a dollar amount for a transaction, and places a hold on the
customerôs account equal to the transaction amount for a limited time. Depending on the
cardholderôs issuing bank, the reserve can be in place for several days.

The following code is a sample of a PreAuth transaction using the minimum required number of
elements:

<fdggwsapi:FDGGWSApiOrderRequest

 xmlns:v1=

òhttp://secure.linkpt.net/fdggwsapi/schemas_us/v1 ò

http://secure.linkpt.net/fdggwsapi/schemas_us/v1

 xmlns:fdggwsapi=

ñhttp://secure.linkpt.net/fdggwsapi/schemas_us/fdggw sapi ">

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:Type>preAuth</v1:Type>

 </v1:CreditCardTxType>

 <v1:CreditCardData>

 <v1:CardNumber>4111111111111111</v1:CardNumber>

 <v1:ExpMonth>12</v1:ExpMonth>

 <v1:E xpYear>12</v1:ExpYear>

 </v1:CreditCardData>

 <v1:Payment>

 <v1:ChargeTotal>100.00</v1:ChargeTotal>

 </v1:Payment>

<v1:TransactionDetails>

 <v1:Recurring>No</v1:Recurring>

 </v1:TransactionDetails>

 </v1:Transaction>

</fdggwsapi:FDGGWSApiOrderRequest>

The following table lists the required and optional fields for the PreAuth transaction. All paths are
relative to fdggwsapi:FDGGWSApiOrderRequest/v1:Transaction.

FIELD REQUIRED

v1:CreditCardTxType/

 v1:Type Required

v1:CreditCardData/

 v1:CardNumber Required if v1:TrackData is not submitted.

 v1:ExpMonth Required if v1:TrackData is not submitted.

 v1:ExpYear Required if v1:TrackData is not submitted.

 v1:CardCodeIndicator Optional

 v1:CardCodeValue Optional

 v1:TrackData Required if v1:CardNumber is not submitted.

v1:CreditCard3DSecure/

 v1:PayerSecurityLevel Required for 3D Secure transactions

 v1:AuthenticationValue See 7.3 CreditCard3DSecure for details

 v1:XID See 7.3 CreditCard3DSecure for details

v1:Payment/

 v1:ChargeTotal Required ï Can be > $0.00

 v1:SubTotal Optional

 v1:VATTax Optional

http://secure.linkpt.net/fdggwsapi/schemas_us/fdggwsapi

FIELD REQUIRED

 v1:Shipping Optional

v1:TransactionDetails/

 v1:UserID Optional

 v1:InvoiceNumber Optional

 v1:OrderId Optional

The First Data Global Gateway Web Service API
only accepts ASCII characters. The Order ID cannot
contain the following characters: &, %, /, or exceed
100 characters in length. The Order ID will be
restricted in such a way so that it can only accepts
alpha numeric (a-z, A-Z, 0-9) and some special
characters for merchants convenience. The allowed
special characters are given below.

¶ Hash (#)

¶ Underscore (_)

¶ Hyphen (-)

¶ At the rate (@)

¶ Dot (.)
¶ Colon (:)
¶ Space ()

 v1:Ip Optional

 v1:ReferenceNumber Optional

 v1:TDate Optional

 v1:Recurring Required

 v1:TaxExempt Optional

 v1:TerminalType Optional

 v1:TransactionOrigin Required

 v1:PONumber Optional

 v1:DeviceID Optional

v1:Billing/ To prevent the possibility of downgrading, some Billing data is required
for all MOTO & ECI transactions!

 v1:CustomerID Optional

 v1:Name MOTO & ECI: Required Retail: Optional

 v1:Company Optional

 v1:Address1 MOTO & ECI: Required Retail: Optional

FIELD REQUIRED

 v1:Address2 Optional

 v1:City MOTO & ECI: Required Retail: Optional

 v1:State MOTO & ECI: Required Retail: Optional

 v1:Zip MOTO & ECI: Required Retail: Optional

 v1:Country MOTO & ECI: Required Retail: Optional

 v1:Phone Optional

 v1:Fax Optional

 v1:Email Optional: But is required to have receipts emailed to customer and

administrator

v1:Shipping/

 v1:Type Optional

 v1: Name Optional

 v1:Address1 Optional

 v1:Address2 Optional

 v1:City Optional

 v1:State Optional

 v1:Zip Optional

 v1:Country Optional

5.1.3 PostAuth (Ticket Only in the Virtual Terminal)
A PostAuth transaction finalizes its companion Pre-Auth transaction. It is done at the time of the
product shipment or at the fulfilment of services. Once a Post-Auth transaction is submitted, the
associated PreAuth transaction is eligible for settlement.

The amount of a PostAuth transaction must be:

1. Less than or equal to the amount of its associated PreAuth transaction
2. Greater than $0.00

If the PreAuth transaction total is greater than the companion PostAuth transaction total, then the
difference is óreservedô on the cardholderôs account until the transaction is settled.

The following code is a sample of a PostAuth transaction using the minimum required elements:

<fdggwsapi:FDGGWSApiOrderRequest

 xmlns:v1=

òhttp:// secure.linkpt.net / fdggwsapi/schemas_us /v1ò

 xmlns:fdggwsapi=

ñhttp:// secure.linkpt. net / fdggwsapi/schemas_us /fdggwsapi ">

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:Type>postAuth</v1:Type>

 </v1:CreditCardTxType>

 <v1:Payment>

 <v1:ChargeTotal>59.45</v1:ChargeTotal>

 </v1:Payment>

 <v1:TransactionDetails>

 <v1: OrderId >

 703d2723 - 99b6 - 4559 - 8c6d - 797488e8977

 </v1: OrderId >

 </v1:TransactionDetails>

 </v1:Transaction>

</ fdggwsapi:FDGGWSApiOrderRequest >

The following table lists the required and optional fields for the PostAuth transaction. All paths
are relative to fdggwsapi:FDGGWSApiOrderRequest/v1:Transaction.

FIELD REQUIRED

v1:CreditCardTxType/

 v1:Type Required

v1:Payment/

 v1:ChargeTotal Optional ï Amount must be less than or equal to the PreAuth

transaction it is associated with and greater than $0.00.

v1:TransactionDetails/

 v1:OrderId Required

The First Data Global Gateway Web Service API
only accepts ASCII characters. The Order ID cannot
contain the following characters: &, %, /, or exceed
100 characters in length.

The Order ID will be restricted in such a way so that
it can only accepts alpha numeric (a-z, A-Z, 0-9) and
some special characters for merchants convenience.
The allowed special characters are given below.

¶ Hash (#)

¶ Underscore (_)

¶ Hyphen (-)

¶ At the rate (@)

¶ Dot (.)
¶ Colon (:)
¶ Space ()

5.1.4 ForceTicket

The following code is a sample of a ForceTicket transaction using the minimum required
elements:

<fdggwsapi:FDGGWSApiOrderRequest

 xmlns:v1=

òhttp:// secure.linkpt.net / fdggwsapi/schemas_us /v1ò

 xmlns:fdggwsapi=

ñhttp:// secure.linkpt.net / fdggw sapi/schemas_us /fdggwsapi ">

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:Type>forceTicket</v1:Type>

 </v1:CreditCardTxType>

 <v1:CreditCardData>

 <v1:CardNumber>4111111111111111</v1:CardNumber>

 <v1:ExpMonth>12</v1:ExpMonth>

 <v1:ExpYear> 12</v1 :ExpYear>

 </v1:CreditCardData>

 <v1:Payment>

 <v1:ChargeTotal>59.45</v1:ChargeTotal>

 </v1:Payment>

 <v1:TransactionDetails>

 <v1:ReferenceNumber>123456</v1:ReferenceNumber>

 </v1:TransactionDetails>

 </v1:Transaction>

</ fdggwsapi:FDGGWSApiOrderRequest >

The following table lists the required and optional fields for the ForceTicket transaction. All paths
are relative to fdggwsapi:FDGGWSApiOrderRequest/v1:Transaction.

FIELD REQUIRED

v1:CreditCardTxType/

 v1:Type Required

v1:CreditCardData/

 v1:CardNumber Required if v1:TrackData is not submitted.

 v1:ExpMonth Required if v1:TrackData is not submitted.

 v1:ExpYear Required if v1:TrackData is not submitted.

 v1:CardCodeValue Optional

 v1:CardCodeIndicator Optional

 v1:TrackData Required if v1:CardNumber is not submitted.

v1:CreditCard3DSecure/

 v1:PayerSecurityLevel Required for 3D Secure transactions

 v1:AuthenticationValue See 7.3 CreditCard3DSecure for details

 v1:XID See 7.3 CreditCard3DSecure for details

v1:Payment/

 v1:ChargeTotal Required ï Must be > $0.00

 v1:SubTotal Optional

 v1:VATTax Optional

FIELD REQUIRED

 v1:Shipping Optional

v1:TransactionDetails/

 v1:UserID Optional

 v1:InvoiceNumber Optional

 v1:OrderId Optional

The First Data Global Gateway Web Service API
only accepts ASCII characters. The Order ID cannot
contain the following characters: &, %, /, or exceed
100 characters in length.

The Order ID will be restricted in such a way so that
it can only accepts alpha numeric (a-z, A-Z, 0-9) and
some special characters for merchants convenience.
The allowed special characters are given below.

¶ Hash (#)

¶ Underscore (_)

¶ Hyphen (-)

¶ At the rate (@)

¶ Dot (.)
¶ Colon (:)
¶ Space ()

 v1:Ip Optional

 v1:ReferenceNumber Required

 v1:TDate Optional

v1:Billing/ To prevent the possibility of downgrading, some Billing data is required
for all MOTO & ECI transactions!

 v1:CustomerID Optional

 v1:Name MOTO & ECI: Required Retail: Optional

 v1:Company Optional

 v1:Address1 MOTO & ECI: Required Retail: Optional

 v1:Address2 Optional

 v1:City MOTO & ECI: Required Retail: Optional

 v1:State MOTO & ECI: Required Retail: Optional

 v1:Zip MOTO & ECI: Required Retail: Optional

 v1:Country MOTO & ECI: Required Retail: Optional

 v1:Fax Optional

FIELD REQUIRED

 v1:Email Optional: But is required to have receipts emailed to customer and

administrator

v1:Shipping/

 v1:Type Optional

 v1:Name Optional

 v1:Address1 Optional

 v1:Address2 Optional

 v1:City Optional

 v1:State Optional

 v1:Zip Optional

 v1:Country Optional

 v1:Phone Optional

 v1:Fax Optional

 v1:Email Optional

5.1.5 Return

The following code is a sample of a Return transaction using the minimum required elements:

<fdggwsapi:FDGGWSApiOrderRequest

 xmlns:v1=

òhttp:// secure.linkpt.net / fdggwsapi/schemas_us /v1ò

 xmlns:fdggwsapi=

ñhttp:// secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi ">

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:Type>return</v1:Type>

 </v1:CreditCardTxType>

 <v1:Payment>

 <v1:ChargeTotal>19.95</v1:ChargeTotal>

 </v1:Payment>

 <v1:TransactionDetails>

 <v1: OrderId >

 62e3b5df - 2911 - 4e89 - 8356 - 1e49302b1807

 </v1: OrderId >

 </v1:TransactionDetails>

 </v1:Transaction>

</ fdggwsapi:FDGGWSApiOrderRequest >

The following table lists the required fields for the Return transaction. All paths are relative to
fdggwsapi:FDGGWSApiOrderRequest/v1:Transaction.

FIELD REQUIRED

v1:CreditCardTxType/

 v1:Type Required

v1:Payment/

 v1:ChargeTotal Required ï Must be > $0.00

v1:TransactionDetails/

 v1:OrderId Required

The First Data Global Gateway Web Service API
only accepts ASCII characters. The Order ID cannot
contain the following characters: &, %, /, or exceed
100 characters in length.

The Order ID will be restricted in such a way so that
it can only accepts alpha numeric (a-z, A-Z, 0-9) and
some special characters for merchants convenience.
The allowed special characters are given below.

¶ Hash (#)

¶ Underscore (_)

¶ Hyphen (-)

¶ At the rate (@)

¶ Dot (.)
¶ Colon (:)
¶ Space ()

5.1.6 Credit

The following code is a sample of a Credit transaction using the minimum required elements:

<fdggwsapi:FDGGWSApiOrderRequest

 xmlns:v1=

òhttp:// secure.linkpt.net / fdggwsapi/schemas_us /v1ò

 xmlns:fdggwsapi=

ñhttp:// secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi ">

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:Type>credit</v1:Type>

 </v1:CreditCardTxType>

 <v1:CreditCardData>

 <v1:CardNumber>4111111111111111</v1:CardNumber>

 <v1:ExpMonth>12</v1:ExpMonth>

 <v1:ExpYear> 12</v1:ExpYear>

 </v1:CreditCardData>

 <v1:Payment>

 <v1:ChargeTotal>50.00</v1:ChargeTotal>

 </v1:Payment>

 </v1:Transaction>

</ fdggwsapi:FDGGWSApiOrderRequest >

The following table lists the required and optional fields for the Credit transaction. All paths are
relative to fdggwsapi:FDGGWSApiOrderRequest/v1:Transaction.

FIELD REQUIRED

v1:CreditCardTxType/

 v1:Type Required

v1:CreditCardData/

 v1:CardNumber Required if v1:TrackData is not submitted.

 v1:ExpMonth Required if v1:TrackData is not submitted.

 v1:ExpYear Required if v1:TrackData is not submitted.

 v1:CardCodeValue Optional

 v1:CardCodeIndicator Optional

 v1:TrackData Required if v1:CardNumber is not submitted

v1:CreditCard3DSecure/

 v1:PayerSecurityLevel Required for 3D Secure transactions

 v1:AuthenticationValue See 7.3 CreditCard3DSecure for details

 v1:XID See 7.3 CreditCard3DSecure for details

v1:Payment/

 v1:ChargeTotal Required ï Must be > $0.00

 v1:SubTotal Optional

 v1:VATTax Optional

 v1:Shipping Optional

v1:TransactionDetails/

 v1:UserID Optional

 v1:InvoiceNumber Optional

 v1:Ip Optional

v1:Billing/
To prevent the possibility of downgrading, some Billing data is required
for all MOTO & ECI transactions!

 v1:CustomerID Optional

 v1:Name MOTO & ECI: Required Retail: Optional

 v1:Company Optional

 v1:Address1 MOTO & ECI: Required Retail: Optional

 v1:Address2 Optional

 v1:City MOTO & ECI: Required Retail: Optional

FIELD REQUIRED

 v1:State MOTO & ECI: Required Retail: Optional

 v1:Zip MOTO & ECI: Required Retail: Optional

 v1:Country MOTO & ECI: Required Retail: Optional

 v1:Phone Optional

 v1:Fax Optional

 v1:Email Optional: But is required to have receipts emailed to customer and

administrator

v1:Shipping/

 v1:Type Optional

 v1:Name Optional

 v1:Address1 Optional

 v1:Address2 Optional

 v1:City Optional

 v1:State Optional

 v1:Zip Optional

 v1:Country Optional

 v1:Phone Optional

 v1:Fax Optional

 v1:Email Optional

5.1.7 Void

The following code is a sample of a Void transaction using the minimum required elements:

<fdggwsapi:FDGGWSApiOrderRequest

 xmlns:v1=

òhttp:// secure.linkpt.net / fdggwsapi/schemas_us /v1ò

 xmlns:fdggwsapi=

ñhttp:// secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi ">

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:Type>void</v1:Type>

 </v1:CreditCardTxType>

 <v1:TransactionDetails>

 <v1: OrderId >

 62e3b5df - 2911 - 4e89 - 8356 - 1e49302b1807

 </v1: OrderId >

 <v1:TDate>1190244932</v1:TDate>

 </v1:TransactionDetails>

 </v1:Transaction>

</ fdggwsapi:FDGGWSApiOrderRequest >

The following table lists the required and fields for the Void transaction. All paths are relative to
fdggwsapi:FDGGWSApiOrderRequest/v1:Transaction.

FIELD REQUIRED

v1:CreditCardTxType/

 v1:Type Required

v1:TransactionDetails/

 v1:OrderId Required

The First Data Global Gateway Web Service API
only accepts ASCII characters. The Order ID cannot
contain the following characters: &, %, /, or exceed
100 characters in length.

The Order ID will be restricted in such a way so that
it can only accepts alpha numeric (a-z, A-Z, 0-9) and
some special characters for merchants convenience.
The allowed special characters are given below.

¶ Hash (#)

¶ Underscore (_)

¶ Hyphen (-)

¶ At the rate (@)

¶ Dot (.)
¶ Colon (:)
¶ Space ()

 v1:TDate Required

5.2 Check Transactions

Regardless of the transaction type, the basic XML document structure of a check transaction is
as follows:

<fdggwsapi:FDGGWSApiOrderRequest

 xmlns:v1=

òhttp:// secure.linkpt.net / fdggwsapi/schemas_us /v1ò

 xmlns:fdggwsapi=

ñhttp:// secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi ">

 <v1:Transaction >

 <v1:TeleCheckTxType>...< /v1: TeleCheck TxType>

 <v1: TeleCheck Data>...</v1: TeleCheck Data>

 <v1:Payment>...</v1:Payment>

 <v1:TransactionDetails>...</v1:TransactionDetails>

 <v1:Billing>...</v1:Billing>

 <v1:Shipping>...</v1:Shipping>

 </ v1:Transaction >

</ fdggwsapi:FDGGWSApiOrde rRequest >

The element TeleCheckTXType is mandatory for all check transactions. The other elements
depend on the transaction type. The content depends on the type of transaction.

See 7 XML Tag Reference on page 40 for details of all required and optional elements
needed for submission for check transactions

5.2.1 Sale

The following code is a sample of a check Sale transaction using the minimum required
elements:

<fdggwsapi:FDGGWSApiOrderRequest

 xmlns:v1=

òhttp:// secure.linkpt.net / fdggwsapi/schemas_us /v1ò

 xmlns:fdggwsapi=

ñhttp:// secure.linkpt.net / fdggws api/schemas_us /fdggwsapi ">

 <v1:Transaction >

 <v1: TeleCheckTxType>

 <v1:Type>sale</v1:Type>

 </v1: TeleCheckTxType>

 <v1:TeleCheckData>

 <v1: CheckNumber>111</CheckNumber>

 <v1: AccountType>pc</AccountType>

 <v1: AccountNumber>1234567890 </AccountNumber>

 <v1: RoutingNumber>055001054</RoutingNumber>

 <v1: DrivingLicenseNumber>U12345678</DrivingLicenseNumber>

 <v1: DrivingLicenseState>CA</DrivingLicenseState>

 </v1:TeleCheckData>

 <v1:Payment>

 <v1:ChargeTotal>19.95 </v1:ChargeTotal>

 </v1:Payment>

 </ v1:Transaction >

</ fdggwsapi:FDGGWSApiOrderRequest >

The following table lists the required and optional fields for the Sale transaction. All paths are
relative to fdggwsapi:FDGGWSApiOrderRequest/v1:Transaction.

FIELD REQUIRED

v1:TeleCheckTxType/

 v1:Type Required

v1:TeleCheckData/

 v1:CheckNumber Required

 v1:AccountType Required

 v1:AccountNumber Required

 v1:RoutingNumber Required

 v1:DrivingLicenseNumber Required

 v1:DrivingLicenseState Required

FIELD REQUIRED

v1:Payment/

 v1:ChargeTotal Required ï Can be Ó $0.00

 v1:SubTotal Optional

 v1:VATTax Optional

 v1:Shipping Optional

v1:TransactionDetails/

 v1:UserID Optional

 v1:InvoiceNumber Optional

 v1:OrderId Optional

The First Data Global Gateway Web Service API
only accepts ASCII characters. The Order ID cannot
contain the following characters: &, %, /, or exceed
100 characters in length.

The Order ID will be restricted in such a way so that
it can only accepts alpha numeric (a-z, A-Z, 0-9) and
some special characters for merchants convenience.
The allowed special characters are given below.

¶ Hash (#)

¶ Underscore (_)

¶ Hyphen (-)

¶ At the rate (@)

¶ Dot (.)
¶ Colon (:)
¶ Space ()

 v1:Ip Optional

 v1:ReferenceNumber Optional

 v1:TDate Optional

 v1:Recurring -Required : Yes or No

 v1:TaxExempt Optional

 v1:TerminalType Optional

 v1:TransactionOrigin Required

 v1:PONumber Optional

v1:Billing/ To prevent the possibility of downgrading, some Billing data is required
for all MOTO & ECI transactions!

 v1:CustomerID Optional

FIELD REQUIRED

 v1:Name MOTO & ECI: Required Retail: Optional

 v1:Company Optional

 v1:Address1 MOTO & ECI: Required Retail: Optional

 v1:Address2 Optional

 v1:City MOTO & ECI: Required Retail: Optional

 v1:State MOTO & ECI: Required Retail: Optional

 v1:Zip MOTO & ECI: Required Retail: Optional

 v1:Country MOTO & ECI: Required Retail: Optional

 v1:Phone Optional

 v1:Fax Optional

 v1:Email Optional: But is required to have receipts emailed to customer and

administrator

5.2.2 Return

The following code is a sample of a Check Return transaction using the minimum required
elements:

<fdggwsapi:FDGGWSApiOrderRequest

 xmlns:v1=

òhttp:// secure.linkpt.net / fdggwsapi/schemas_us /v1ò

 xmlns:fdggwsapi=

ñhttp:// secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi ">

 <v1:Transaction>

 <v1: TeleCheckTxType >

 <v1:Type>return</v1:Type>

 </v1: TeleCheckTxType >

 <v1:Payment>

 <v1:ChargeTotal>19.95</v1:ChargeTotal>

 </v1:Payment>

 <v1:TransactionDetails>

 <v1: OrderId >

 62e3b5df - 2911 - 4e89 - 8356 - 1e49302b1807

 </v1: OrderId >

 </v1:TransactionDetails>

 </v1:Transaction>

</ fdggwsapi:FDGGWSApiOrderRequest >

The following table lists the required fields for the Return transaction. All paths are relative to
fdggwsapi:FDGGWSApiOrderRequest/v1:Transaction.

FIELD REQUIRED

v1:TeleCheckTxType/

 v1:Type Required

FIELD REQUIRED

v1:Payment/

 v1:ChargeTotal Required ï Must be > $0.00

v1:TransactionDetails/

 v1:OrderId Required

The First Data Global Gateway Web Service API
only accepts ASCII characters. The Order ID cannot
contain the following characters: &, %, /, or exceed
100 characters in length.

The Order ID will be restricted in such a way so that
it can only accepts alpha numeric (a-z, A-Z, 0-9) and
some special characters for merchants convenience.
The allowed special characters are given below.

¶ Hash (#)

¶ Underscore (_)

¶ Hyphen (-)

¶ At the rate (@)

¶ Dot (.)
¶ Colon (:)
¶ Space ()

5.2.3 Void

The following code is a sample of a Check Void transaction using the minimum required
elements:

<fdggwsapi:FDGGWSApiOrderRequest

 xmlns:v1=

òhttp:// secure.linkpt.net / fdggwsapi/schemas_us /v1ò

 xmlns:fdggwsapi=

ñhttp:// secure.linkpt.net / fdggwsapi/schemas_u s/fdggwsapi ">

 <v1:Transaction>

 <v1: TeleCheckTxType>

 <v1:Type>void</v1:Type>

 </v1: TeleCheckTxType>

 <v1:Payment>

 <v1:ChargeTotal>19.95</v1:ChargeTotal>

 </v1:Payment>

 <v1:TransactionDetails>

 <v1: OrderId >

 62e3b5df - 2911 - 4e89 - 8356 - 1e49302b1807

 </v1: OrderId >

 </v1:TransactionDetails>

 </v1:Transaction>

</ fdggwsapi:FDGGWSApiOrderRequest >

The following table lists the required fields for the Void transaction. All paths are relative to
fdggwsapi:FDGGWSApiOrderRequest/v1:Transaction.

FIELD REQUIRED

v1:TeleCheckTxType/

 v1:Type Required

v1:Payment/

 v1:ChargeTotal Required ï Must be > $0.00

v1:TransactionDetails/

 v1:OrderId Required

The First Data Global Gateway Web Service API
only accepts ASCII characters. The Order ID cannot
contain the following characters: &, %, /, or exceed
100 characters in length. The Order ID will be
restricted in such a way so that it can only accepts
alpha numeric (a-z, A-Z, 0-9) and some special
characters for merchants convenience. The allowed
special characters are given below.

¶ Hash (#)

¶ Underscore (_)

¶ Hyphen (-)

¶ At the rate (@)

¶ Dot (.)
¶ Colon (:)
¶ Space ()

v1:TDate Required

5.3 Calculating Shipping and Tax

Regardless of the transaction type, the basic XML document structure of a tax or shipping
charge calculation is as follows:

<fdggwsapi:FDGGWSApiOrderRequest

 xmlns:v1=

òhttp:// secure.linkpt.net / fdggwsapi/schemas_us /v1ò

 xmlns:fdggwsapi=

ñhttp:// secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi ">

 <v1:Transaction>

 <v1:Calculate...>

 ...

 </v1:Calculate...>

 </v1:Transaction>

</fdggwsapi:FDGGWSApiOrderRequest>

See 7 XML Tag Reference on page 40 for details of all required and optional elements
needed for tax or shipping charge calculations

5.3.1 Calculate Shipping

The following code is a sample of a shipping charge calculation using the minimum required
elements:

<fdggwsapi:FDGGWSApiOrderRequest

 xmlns:v1=

òhttp:// secure.linkpt.net / fdggwsapi/schemas_us /v1ò

 xmlns:fdggwsapi=

ñhttp:// secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi ">

 <v1:Transaction>

 <v1:CalculateShipping>

 <v1:SubTotal>12.0</v1:SubTotal>

 <v1:Weight>1.2000000476837158</v1:Weight>

 <v1:ItemC ount>1</v1:ItemCount>

 <v1:CarrierType>2</v1:CarrierType>

 <v1:ShipState>CA</v1:ShipState>

 </v1:CalculateShipping>

 </v1:Transaction>

</fdggwsapi:FDGGWSApiOrderRequest>

The following table lists the required and optional fields for the shipping charge calculation. All
paths are relative to fdggwsapi:FDGGWSApiOrderRequest/v1:Transaction.

FIELD REQUIRED

v1:CalculateShipping/

 v1:SubTotal Required

 v1:Weight Required

 v1:ItemCount Required

 v1:CarrierType Required

 v1:ShipState Required

5.3.2 Calculate Tax

The following code is a sample of a tax calculation using the minimum required elements:

<fdggwsapi:FDGGWSApiOrderRequest

 xmlns:v1=

òhttp:// secure.linkpt.net / fdggwsapi/schemas_us /v1ò

 xmlns:fdggwsapi=

ñhttp:// secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi ">

 <v1:Transaction>

 <v1: CalculateTax >

 <v1:SubTotal>12.0</v1:SubTotal>

 <v1:ShipState>CA</v1:ShipState>

 <v1:ShipZip>93065</v1:ShipZip>

 </v1:Calc ulateTax>

 </v1:Transaction>

</fdggwsapi:FDGGWSApiOrderRequest>

The following table lists the required and optional fields for the tax calculation. All paths are
relative to fdggwsapi:FDGGWSApiOrderRequest/v1:Transaction.

FIELD REQUIRED

v1:CalculateTax/

 v1:SubTotal Required

 v1:ShipState Required

 v1:ShipZip Required

6 Additional Web Service Actions

In addition to credit card and check transactions, the First Data Global Gateway Web Service
API supports actions for recurring payments and a system check to test if the system is online.

Web service actions are contained in the fdggwsapi:FDGGWSApiActionRequest element.

6.1 Recurring Payments

The Recurring Payment action allows you to install, modify or cancel recurring credit card
payments.

6.1.1 Install Recurring Payment

Use Recurring Payment to schedule credit card payments for future dates. The
transactions can begin on the current date. If you set the start date as the current date,
the first transaction processes immediately. This feature can schedule a single
transaction in the future. You cannot set a start date in the past.

The following example shows how to install a recurring credit card, once a month for 12
months, starting on December 31, 2011:

<fdggwsapi:FDGGWSApiActionRequest

 xml ns:fdggwsapi=

" http:// secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi"

 xmlns:a1=

" http:// secure.linkpt.net / fdggwsapi/schemas_us /a1"

 xmlns:v1=

" http:// secure.linkpt.net / fdggwsapi/schemas_us /v1">

 <a1:Action >

 <a1:RecurringPayment>

 <a1:RecurringPaymen tInformation>

 <a1:RecurringStartDate>20111231 </a1:RecurringStartDate>

 <a1:InstallmentCount> 12</a1:InstallmentCount>

 <a1:InstallmentFrequency>1</a1:InstallmentFrequency>

 <a1:InstallmentPeriod> month </a1:InstallmentPeri od>

 </a1:RecurringPaymentInformation>

 <a1:TransactionDataType>

 <a1:CreditCardData>

 <v1:CardNumber >4012000033330026</v1:CardNumber>

 <v1:ExpMonth >12</v1:ExpMonth>

 <v1:ExpYear >12</v1:ExpYear>

 </a1:CreditCardData>

 </a1:Transacti onDataType>

 <v1:Payment>

 <v1:ChargeTotal>10.00</v1:ChargeTotal>

 <v1:SubTotal>5.00</v1:SubTotal>

 </v1:Payment>

 <v1:Shipping>

 <v1:Address1> ... </v1:Address1>

 <v1:Carrier> ... </v1:Carrier>

 <v1:City> ... </v1:City>

 <v1:Country> ... </v1:Country>

 <v1:Items> ... </v1:Items>

 <v1:State> ... </v1:State>

 <v1:Total> ... </v1:Total>

 <v1:Weight> ... </v1:Weight>

 </v1:Shipping>

 <v1:Billing>

 <v1:Address1> ... </v1:Address1>

 <v1:City> ... </v1:City>

 <v1:Country> ... </v1:Count ry>

 <v1:State> ... </v1:State>

 <v1:Zip> ... </v1:Zip>

 </v1:Billing>

 <v1:TransactionDetails>

 <v1:InvoiceNumber> ... </v1:InvoiceNumber>

 <v1:TransactionOrigin> ... </v1:TransactionOrigin>

 <v1:UserID> ... </v1:UserID>

 <v1:DeviceID>é</v1:DeviceID>

 </v1:TransactionDetails>

 <a1:Function>install</a1:Function>

 </a1:RecurringPayment>

 </a1:Action>

</fdggwsapi:FDGGWSApiActionRequest>

The following table describes the optional or required fields for installing a recurring transaction.
In addition, you must submit the data required for a credit card or check sale transaction. All
paths are relative to fdggwsapi:FDGGWSApiActionRequest / a1:Action/ a1:RecurringPayment.

Maximum Failures

Enter the number of times the First Data Global Gateway is to retry the transaction
before the Admin is contacted. The default number is three (3), but the retry transaction
range is one (1) to five (5).

For Example: A recurring transaction is declined, and its retry number is three
(3). The solution attempts to process the transaction once a day for the next
three (3) days. After the third decline, the Gateway sends a Final Failure
Notification email to the Admin. The email alerts the Admin that the transaction
has been submitted for processing three (3) times and has been declined each
time. After the system has reached the retry limit, the gateway will stop all
attempts to obtain an authorization until the Admin modifies or cancels the PB.

FIELD REQUIRED

a1:Function Required

a1:RecurringPaymentInformation

 a1:RecurringStartDate Required

 a1:InstallmentCount Required

 a1:InstallmentFrequency Required

 a1:InstallmentPeriod Required

 a1:MaximumFailures Required

6.1.2 Modify Recurring Payment

The following example shows how to modify an existing recurring payment using the Order ID of
the original instalment. The Credit Card Number is required whenever modifying a Recurring
Payment.:

<fdggwsapi:FDGGWSApiActionRequest

 xmlns:fdggwsapi=

" http:// secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi"

 xmlns:a1=

" http:// secure.linkpt.net / fdggwsapi/schemas_us /a1"

 xmlns:v1=

" http:// secure.linkpt.net / fdggwsapi/schemas_us /v1">

 <a1:Action>

 <a1:RecurringPayment>

 <a1:Function>modify</ a1:Function>

 <v1 :Billing>...</v1:Billing>

 <v1:Shipping>...</v1:Shipping>

 <a1: OrderId >

 e368a525 - 173f - 4f56 - 9ae2 - beb4023a6993

 </ a1: OrderId >

 <a1:RecurringPaymentInformation>

 <a1:InstallmentCount>999</ a1:InstallmentCount>

 </ a1:RecurringPaymentInformation >

 </ a1:RecurringPayment>

 <v1:TransactionDetails>

 <v1:InvoiceNumber>...</v1:InvoiceNumber>

 <v1:TransactionOrigin>...</v1:TransactionOrigin>

 <v1:UserID>...</v1:UserID>

 <v1:DeviceID>é</v1:DeviceID>

 </v1:TransactionDetails>

 </ a1:Acti on>

</ fdggwsapi :FDGGWSApiActionRequest >

You can modify both the recurring payment information and the transaction details. Simply,
include the fields that need to be modified. Some dependent fields may be required, for example,
you must update the expiration date if you update the card number.

The following table describes the optional or required fields for modifying a recurring transaction.
For credit card transaction fields, see 5.1.1 Sale on page 14; for check, see 5.2.1 Sale on page
28 for details. (v1:Billing and v1:Shipping are optional; however, transactions that do not include
these elements may downgrade.) The transaction data must be submitted as a child of
a1:RecurringPayment. All paths are relative to fdggwsapi:FDGGWSApiActionRequest /
a1:Action/ a1:RecurringPayment.

FIELD REQUIRED

a1:Function Required

FIELD REQUIRED

a1:OrderId
Required

The First Data Global Gateway Web Service API
only accepts ASCII characters. The Order ID cannot
contain the following characters: &, %, /, or exceed
100 characters in length. The Order ID will be
restricted in such a way so that it can only accepts
alpha numeric (a-z, A-Z, 0-9) and some special
characters for merchants convenience. The allowed
special characters are given below.

¶ Hash (#)

¶ Underscore (_)

¶ Hyphen (-)

¶ At the rate (@)

¶ Dot (.)
¶ Colon (:)
¶ Space ()

a1:RecurringPaymentInformation

 a1:RecurringStartDate Required

 a1:InstallmentCount Required

 a1:InstallmentFrequency Required

 a1:InstallmentPeriod Required

a1:ChargeTotal Required

 a1:MaximumFailures Required

 v1:CardNumber Required

6.1.3 Cancel Recurring Payment

The following example shows how to cancel an existing recurring payment using the Order ID of
the original instalment:

<fdggwsapi:FDGGWSApiActionRequest

 xmlns:fdggwsapi=

" http:// secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi"

 xmlns:a1=

" http:// secure.linkpt.net / fdggwsapi/schemas_us /a1"

 xmlns:v1=

" http:// secure.linkpt.net / fdggwsapi/schemas_us /v1">

 <a1:Action>

 <a1:RecurringPayment>

 <a1:Function>cancel</ a1:Function>

 <a1: OrderId >

 e368a525 - 173f - 4f56 - 9ae2 - beb4023a6993

 </ a1: OrderId >

 </ a1:RecurringPayment>

 </ a1:Action>

</ fdggwsapi :FDGGWSApiActionRequest >

The following table describes the optional or required fields for cancelling a recurring transaction.
All paths are relative to fdggwsapi:FDGGWSApiActionRequest / a1:Action/
a1:RecurringPayment.

FIELD REQUIRED

a1:Function Required

a1:OrderId Required

6.2 SystemCheck

The SystemCheck action allows you to check that the First Data Global Gateway Web Service
API is currently available. Most integrators do not need to perform this check more frequently
than once every 15 minutes; you should not perform this check more frequently than once every
5 minutes.

The following code is a sample of the SystemCheck call.

<fdggwsapi:FDGGWSApiActionRequest

 xmlns:fdggwsapi=

" http:// secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi"

 xmlns:a1=

" http:// secure.linkpt.net / fdggwsapi/schemas_us /a1"

 xmlns:v1=

" http:// secure.linkpt.net / fdggwsapi/schemas_us /v1">

 <a1:Action>

 <a1:SystemCheck / >

 </ a1:Action>

</ fdggwsapi :FDGGWSApiActionRequest >

7 XML Tag Reference

This chapter provides a reference for the XML elements used in sending transactions and
actions to the First Data Global Gateway Web Service API.

7.1 CreditCardTxType

The following table describes the sub-elements of the v1:CreditCardTxType element:

ELEMENT DATA TYPE DESCRIPTION

v1:Type xs:string The transaction type. Valid values are:

sale

ForceTicket

preAuth

postAuth

Return

Credit

Void

7.2 CreditCardData

The following table describes the sub-elements of the v1:CreditCardData element:

ELEMENT DATA TYPE DESCRIPTION

v1:CardNumber xs:string The customerôs credit card number. The
string contains only digits; passing the
number in the format xxxx-xxxx-xxxx-
xxxx will result in an error.

v1:ExpMonth xs:string The expiration month of the customerôs
credit card. The content of this element
always contains two digits, for example,
use 07 for July.

v1:ExpYear xs:string The expiration year of the customerôs
credit card. The content of this element
always contains two digits, for example,
use 09 for 2009.

v1:CardCodeValue xs:string The three (3) or four (4) digit card
security code (CSC), card verification
value (CVV) or code (CVC), which is
typically printed on the back of the credit
card. For information about using CSC,
contact support.

ELEMENT DATA TYPE DESCRIPTION

v1:CardCodeIndicator xs:string Indicates why the card code value was
not provided. Valid values are:

NOT_PROVIDED

PROVIDED

ILLEGIBLE

NO_IMPRINT

NOT_PRESENT

v1:TrackData xs:string The track data of a card when using a
card reader instead of keying in card
data. Use this value instead
CardNumber, ExpMonth and ExpYear
when swiping the card. This field needs
to contain either track 1 data, track 2
data, or concatenated track 1 and 2 data.
Concatenated track data must include
the track and field separators, as they
are stored on the card. Track 1 and track
2 data are in the format: %<track
1?;<track 2>?

7.3 CreditCard3DSecure

The following table describes the sub-elements of the v1:CreditCard3DSecure element:

ELEMENT DATA TYPE DESCRIPTION

v1:PayerSecurityLevel xs:string The two-digit PayerSecurityLevel
returned by your Merchant Plug-in.

v1:AuthenticationValue xs:string The AuthenticationValue (MasterCard:
AAV or VISA: CAAV) returned by your
Merchant Plug-in.

v1:XID xs:string The XID returned by your Merchant
Plug-in.

Note: You receive these values from your Merchant Plug-in for 3D Secure or a 3D Secure
provider. The 3D Secure functionality of First Data Global Gateway Connect cannot be used for
transactions via the Web Service API.

7.4 Payment

The following table describes the sub-elements of the v1:Payment element:

ELEMENT DATA TYPE DESCRIPTION

v1:ChargeTotal xs:double The total transaction amount, including
tax, VAT, and shipping amounts. The
number of positions after the decimal
point must not exceed 2. 3.123 is invalid.
3.12, 3.1, and 3 are valid. For sale
transaction type, can be $0.00.

v1:SubTotal xs:double The sub total amount of the transaction,
not including tax, VAT, or shipping
amounts.

V1:Tax xs:double Tax amount of the transaction

v1:VATTax xs:double VAT tax amount

v1:Shipping xs:double Shipping amount of the transaction

7.5 TransactionDetails

The following table describes the sub-elements of the v1:TransactionDetails element:

ELEMENT DATA TYPE DESCRIPTION

v1:UserID xs:string User ID of the user who performed the
transaction. This value is used for
reporting.

v1:InvoiceNumber xs:string Invoice number assigned by the
merchant.

ELEMENT DATA TYPE DESCRIPTION

v1:OrderId xs:string Order ID This must be unique for the
Store ID. If no Order ID is transmitted,
the Web Service API assigns a value.

The First Data Global Gateway Web
Service API only accepts ASCII
characters. The Order ID cannot contain
the following characters: &, %, /, or
exceed 100 characters in length. The
Order ID will be restricted in such a way
so that it can only accepts alpha numeric
(a-z, A-Z, 0-9) and some special
characters for merchants convenience.
The allowed special characters are given
below.

¶ Hash (#)

¶ Underscore (_)

¶ Hyphen (-)

¶ At the rate (@)

¶ Dot (.)
¶ Colon (:)
¶ Space ()

v1:Ip xs:string Customerôs IP address which can be
used by the Web Service API for fraud
detection by IP address. Must be in the
format xxx.xxx.xxx.xxx, for example
128.0.10.2 is a valid IP.

v1:ReferenceNumber xs:string The six (6) digit reference number
received as the result of a successful
external authorization (for example, by
phone). This value is required for
mapping a ForceTicket transaction to a
previous authorization.

v1:TDate xs:string The TDate of the Sale, PostAuth,
ForceTicket, Return, or Credit
transaction referred to by a Void
transaction. The TDate value is returned
in the response to a successful
transaction. When performing a Void
transaction, the TDate and OrderId of the
original transaction are required.

ELEMENT DATA TYPE DESCRIPTION

v1:Recurring xs:string Indicates if the transaction is a recurring
transaction. This is a required field and
must contain a value = Yes or No.

Valid values are:

Yes

No

v1:TaxExempt xs:string Indicates if the transaction is exempt
from tax. Valid values are:

Yes

No

v1:TerminalType xs:string The type of the terminal performing the
transaction, up to 32 characters. Valid
values are:

Standalone ï point-of-sale credit card
terminal

POS ï electronic cash register or
integrated POS system

Unattended ï self-service station

Unspecified ï e-commerce, general,
CRT, or other applications

v1:TransactionOrigin xs:string Required: The source of the transaction.
Valid values are:

ECI - email or Internet

MOTO - mail order / telephone order

RETAIL - face to face

v1:PONumber xs:string The purchase order number of the
transaction, if applicable.

v1:DeviceID xs:string Data to help identify potential fraud on
the consumerôs computer

7.6 Billing

The following table describes the sub-elements of the v1:Billing element:

ELEMENT DATA TYPE DESCRIPTION

v1:CustomerID xs:string Merchantôs ID for the customer.

v1:Name xs:string Customerôs Name - If provided, it will
appear on your transaction reports.

v1:Company xs:string Customerôs company. If provided, it will
appear on your transaction reports.

ELEMENT DATA TYPE DESCRIPTION

v1:Address1 xs:string The first line of the customerôs address. If
provided, it will appear on your
transaction reports.

v1:Address2 xs:string The second line of the customerôs
address. If provided, it will appear on your
transaction reports.

v1:City xs:string Customerôs city. If provided, it will appear
on your transaction reports.

v1:State xs:string Customerôs state - If provided, it will
appear on your transaction reports.

v1:Zip xs:string Customerôs ZIP code - If provided, it will
appear on your transaction reports.

v1:Country xs:string Customerôs country - If provided, it will
appear on your transaction reports.

v1:Phone xs:string Customerôs phone number - If provided, it
will appear on your transaction reports.

v1:Fax xs:string Customerôs fax number - If provided, it will
appear on your transaction reports.

v1:Email xs:string Customerôs email address - If provided, it
will appear on your transaction reports.

7.7 Shipping

The following table describes the sub-elements of the v1:Shipping element:

ELEMENT DATA TYPE DESCRIPTION

v1:Type xs:string Shipping Method

v1:Name xs:string Recipientôs name - If provided, it will
appear on your transaction reports.

v1:Address1 xs:string The first line of the shipping address. If
provided, it will appear on your
transaction reports.

v1:Address2 xs:string The second line of the shipping address.
If provided, it will appear on your
transaction reports.

v1:City xs:string Recipientôs city - If provided, it will appear
on your transaction reports.

v1:State xs:string Recipientôs state - If provided, it will
appear on your transaction reports.

ELEMENT DATA TYPE DESCRIPTION

v1:Zip xs:string Recipientôs ZIP Code - If provided, it will
appear on your transaction reports.

v1:Country xs:string Recipientôs country - If provided, it will
appear on your transaction reports.

v1:Carrier xs:integer Integer code defined by the merchant
identifying the carrier type

v1:Total xs:double The transaction amount prior to
calculating shipping. The number of
positions after the decimal point must not
exceed 2. 3.123 is invalid. 3.12, 3.1, and
3 are valid.

v1:Weight xs:double The weight of the item shipped, in pounds
or kilograms as determined by the
merchant.

7.8 TeleCheckTxType

The following table describes the sub-elements of the v1:TeleCheckTxType element:

ELEMENT DATA TYPE DESCRIPTION

v1:Type xs:string Valid transaction type values are:

Sale

Void

Return

7.9 TeleCheckData

The following table describes the sub-elements of the v1:TeleCheckData element:

ELEMENT DATA TYPE DESCRIPTION

v1:CheckNumber xs:string Customerôs check number

v1:AccountType xs:string Valid type of account values are:

PC ï Primary checking

PS ï Primary savings

BC ï Backup checking

BS ï Backup savings

v1:AccountNumber xs:string Checking Account Number

v1:RoutingNumber xs:string Customerôs Bank Routing Number

v1:DrivingLicenseNumber xs:string Customerôs Driverôs License Number

ELEMENT DATA TYPE DESCRIPTION

v1:DrivingLicenseState xs:string The two-digit abbreviation for the state that
issues the Driverôs License.

7.10 CalculateShipping

The following table describes the sub-elements of the v1:CalculateShipping element:

ELEMENT DATA TYPE DESCRIPTION

v1:SubTotal xs:double Transaction amount prior to calculating
shipping. The number of positions after the
decimal point must not exceed 2. 3.123 is
invalid. 3.12, 3.1, and 3 are valid.

v1:Weight xs:double The weight of the item being shipped, in
pounds or kilograms as determined by the
merchant.

v1:ItemCount xs:integer Number of items being shipped.

v1:CarrierType xs:integer Integer code defined by the merchant
identifying the carrier type

v1:ShipState v1:Zip Two-digit state abbreviation for the shipping
destination

7.11 CalculateTax

The following table describes the sub-elements of the v1:CalculateTax element:

ELEMENT DATA TYPE DESCRIPTION

v1:SubTotal xs:double Transaction amount prior to calculating tax.
The number of positions after the decimal
point must not exceed 2. 3.123 is invalid.
3.12, 3.1, and 3 are valid.

v1:ShipState xs:string Two-digit state abbreviation for the shipping
destination

v1:ShipZip v1:Zip ZIP code of the shipping destination.

7.12 RecurringPayment

The following table describes the sub-elements of the a1:RecurringPayment element:

ELEMENT DATA TYPE DESCRIPTION

a1:Function xs:string The type of recurring payment transaction.
Valid values are:

install

modify

cancel

a1:OrderId xs:string Order ID of the recurring payment being
modified or cancelled

The First Data Global Gateway Web Service
API only accepts ASCII characters. The
Order ID cannot contain the following
characters: &, %, /, or exceed 100 characters
in length. The Order ID will be restricted in
such a way so that it can only accepts alpha
numeric (a-z, A-Z, 0-9) and some special
characters for merchants convenience. The
allowed special characters are given below.

¶ Hash (#)

¶ Underscore (_)

¶ Hyphen (-)

¶ At the rate (@)

¶ Dot (.)
¶ Colon (:)
¶ Space ()

a1:RecurringPaymentInformatio
n

Complex Contains the elements defining the recurring
payment

 a1:RecurringStartDate xs:string Start Date of the recurring payment
transaction in YYYYMMDD format. This
value cannot be in the past.

 a1:InstallmentCount xs:string Number of instalments of the recurring
payment

 a1:InstallmentFrequency xs:string Frequency of the instalment. Combines with
the InstallmentPeriod to determine when the
instalments occur.

For example, use 2 for InstallmentFrequency
and week for InstallmentPeriod for bi-weekly
payments. Use 1 and month for monthly.

ELEMENT DATA TYPE DESCRIPTION

 a1:InstallmentPeriod xs:string The period of the instalment. Combines with
the InstallmentFrequency to determine when
the instalments occur. Valid values are:

Day

Week

Month

Year

8 Building a SOAP Request Message

The next step after building your transaction in XML is to build the SOAP envelope that wraps
the transaction.

The format for a SOAP envelope wrapping an operation sent to the First Data Global Gateway
Web Service API is as follows:

<?xml version="1.0" encoding="UTF - 8"?>

<SOAP- ENV:Envelope

xmlns:SOAP - ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP- ENV:Header />

 <SOAP- ENV:Body>

 <! -- Transaction or action XML -- >

 </SOAP- ENV:Body>

</SOAP- ENV:Envelope>

The SOAP message contains a SOAP envelope with a header and message body. The Web
Service API does not require any headers for the SOAP message. The body contains the
transaction or action XML as defined in the previous sections. There are no further requirements
for mapping the type of transaction or action in the SOAP envelope. The Web Service API maps
the operation based on the content of the body.

For example, the complete SOAP message for a credit sale transaction looks like the following:

<?xml version="1.0" encoding="UTF - 8"?>

<SOAP- ENV:Envelope

xmlns:SOAP - ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP- ENV:Header />

 <SOAP- ENV:Body>

 <fdggwsapi:FDGGWSApiOrderRequest xmlns:fdggwsapi=

ñhttp://secure.linkpt.net / fdggwsapi/schemas _us /fdggwsapi ">

<v1:Transaction xmlns:v1=

" http://secure.linkpt.net / fdggwsapi/schemas_us /v1">

 <v1:CreditCardTxType>

 <v1:Type>sale</v1:Type>

 </v1:CreditCardTxType>

 <v1:CreditCardData>

 <v1:CardNumber>4012000033330026</v1:CardNumber>

 <v1:ExpMonth>12</v1:ExpMonth>

 <v1:ExpYear>12</v1:ExpYear>

 </v1:CreditCardData>

 <v1:Payment>

 <v1:ChargeTotal>120</v1:ChargeTotal>

 </v1:Payment>

 </v1:Transaction>

 </fdggwsapi:FDGGWSApiOrderRequest>

 </SOAP- ENV:Body>

</SOAP- ENV:Envelope>

9 Reading the SOAP Response Message

The First Data Global Gateway Web Service API returns a SOAP message in response to your
transaction or action request.

¶ If your request is successful, the Web Service API returns an
fdggwsapi:FDGGWSApiOrderResponse or fdggwsapi:FDGGWSApiActionResponse in
the body of the SOAP message.

¶ If your request is unsuccessful, the Web Service API returns a SOAP fault message.

Both SOAP message types are contained in the body of the HTTP response message.

9.1 SOAP Response Message

9.1.1 Transaction

The First Data Global Gateway Web Service API returns a SOAP response message when your
transaction is successful and the Web Service API is able to return an approved or declined
response. The response message has the following format:

<?xml version="1.0" encoding="UTF - 8"?>

<SOAP- ENV:Envelope

 xmlns:SOAP - ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP- ENV:Header />

 <SOAP- ENV:Body>

 <fdggwsapi:FDGGWSApiOrderResponse xmlns:fdggwsapi=

ñhttp://secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi ">

 <! -- transaction result -- >

 </ fdggwsapi:FDGGWSApiOrderResponse >

 </SOAP- ENV:Body>

</SOAP- ENV:Envelope>

The SOAP response contains no headers. The SOAP body contains the actual transaction result
contained in the fdggwsapi:FDGGWSApiOrderResponse element. The sub-elements are defined
in Analyzing the Transaction Response on page 56. The following is an example of the SOAP
message returned for an approved Sale transaction:

<?xml version="1.0" encoding="UTF - 8"?>

<SOAP- ENV:Envelope

 xmlns:SOAP - ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP- ENV:Header />

 <SOAP- ENV:Body>

 <fdggwsapi:FDGGWSApiOrderResponse xmlns:fdggwsapi=

ñhttp://secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi ">

 <fdggws api:CommercialServiceProvider>

 CSI

 </ fdggws api:CommercialServiceProvider>

 <fdggws api:TransactionTime>

 Tue Nov 03 09:35:05 2009

 </ fdggws api:TransactionTime>

 <fdggwsapi:TransactionID>

 2000486340

 </fdggwsapi:TransactionID>

 <fdggws api:ProcessorReferenceNumber>

 OK289C

 </ fdggws api:ProcessorReferenceNumber>

 <fdggws api:ProcessorResponseMessag e>

 APPROVED

 </ fdggws api:ProcessorResponseMessage>

 <fdggws api:ErrorMessage />

 <fdggws api: OrderId >

 A- eb0406bc - 7eb8 - 419b - aa1a - 7a4394e2c83e

 </ fdggws api: OrderId >

 <fdggws api:ApprovalCode>

 OK289C0003529354:NNN:

 </ fdggws api:ApprovalCode>

 <fdggws api:AVSResponse>PPX</ fdggws api:AVSResponse>

 <fdggws api:TDate> 1256168682 </ fdggws api:TDate>

 <fdggws api:TransactionResult>

 APPROVED

 </ fdggws api:TransactionResult>

 <fdggws api:ProcessorResponseCode>

 A

 </ fdggws api:ProcessorResponseCode>

 <fdggws api:ProcessorApprovalCode>

 440368

 </ fdggws api:ProcessorApprovalCode>

 <fdggwsapi:CalculatedTax/>

 <fdggwsapi:CalculatedShipping/>

 <fdggwsapi:TransactionScore>

 496

 </ fdggwsapi:TransactionScore >

 <fdggwsapi:FraudAction>

 ACCEPT

 </fdggwsapi:FraudAc tion>

 <fdggwsapi:AuthenticationResponseCode>

 XXX

 </fdggwsapi:AuthenticationResponseCode>

 </ fdggws api: FDGGWSApiOrderResponse>

 </SOAP- ENV:Body>

</SOAP- ENV:Envelope>

9.1.2 Action

If you send an action, the Web Service API returns a fdggwsapi:FDGGWSApiActionResponse.

The response for a successful instalment, modification or cancellation or for a system check
contains the value true for the parameter <fdggwsapi:Success>. The following is an example of
the message returned for a successful action:

<fdggwsapi:FDGGWSApiActionResponse xmlns:fdggwsapi=

ñhttp://secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi ">

 <fdggwsapi:Success>

 true

 </fdggwsapi:Success>

 <fdggwsapi:Commerc ialServiceProvider/>

 <fdggwsapi:TransactionTime>

 Tue Nov 03 10:00:58 2009

 </fdggwsapi:TransactionTime>

 <fdggwsapi:TransactionID/>

 <fdggwsapi:ProcessorReferenceNumber/>

 <fdggwsapi:ProcessorResponseMessage/>

 <fdggwsapi:ErrorMessage/>

 <fdggwsapi: Orde rId >

 A- 3384d07e - 699a - 48d3 - a44a - 61ccefde0524

 </fdggwsapi: OrderId >

 <fdggwsapi:ApprovalCode/>

 <fdggwsapi:AVSResponse/>

 <fdggwsapi:TDate/>

 <fdggwsapi:TransactionResult>

 APPROVED

 </fdggwsapi:TransactionResult>

 <fdggwsapi:ProcessorResponseCode/>

 <fdggwsapi:ProcessorApprovalCode/>

 <fdggwsapi:TransactionScore>

 57

 </fdggwsapi:TransactionScore>

 <fdggwsapi:FraudAction>

 ACCEPT

 </fdggwsapi:FraudAction>

</fdggwsapi:FDGGWSApiActionResponse>

9.2 SOAP Fault Message

The First Data Global Gateway Web Service API returns a SOAP fault message when your
request is unsuccessful. The fault message has the following format:

<?xml version="1.0" encoding="UTF - 8"?>

<SOAP- ENV:Envelope

 xmlns:SOAP - ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP- ENV:Header />

 <SOAP- ENV:Body>

 <SOAP- ENV:Fault>

 <faultcode>SOAP - ENV:Client</faultcode>

 <faultstring xml:lang="en - US">

 <! -- fault message -- >

 </faultstring>

 <detail>

 <! -- fault message -- >

 </detail>

 </SOAP- ENV:Fault>

 </SOAP- ENV:Body>

</SOAP- ENV:Envelope>

The SOAP fault message may contain the following elements:

ELEMENT DATA TYPE DESCRIPTION

faultcode xs:string Defines where the error occurred. Valid values are:

SOAP-ENV:Server

SOAP-ENV:Client

faultstring xs:string Defines the fault type

detail xs:string Additional data depending on the fault type

The possible return values by faultcode and faultstring are defined in the following sections.

9.2.1.1 SOAP-ENV:Server

The SOAP-ENV:Server faultcode indicates that the Web Service API has failed to process your
transaction due to an internal system error. If you receive this as response, contact support to
resolve the problem.

The SOAP-ENV:Server message has the following format:

<?xml version="1.0" encoding="UTF - 8"?>

<SOAP- ENV:Envelope

 xmlns:SOAP - ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP- ENV:Header />

 <SOAP- ENV:Body>

 <SOAP- ENV:Fault>

 <faultcode>SOAP - ENV:Server</faultcode>

 <faultstring xml:lang="en - US">

 unexpected error

 </faultstring>

 </SOAP- ENV:Fault>

 </SOAP- ENV:Body>

</SOAP- ENV:Envelope>

The SOAP SOAP-ENV:Envelope/SOAP-ENV:Body/SOAP-ENV:Fault contains the following
elements:

ELEMENT DATA TYPE DESCRIPTION

faultcode xs:string This value is always:

SOAP-ENV:Server

faultstring xs:string This value is always:

unexpected error

9.2.2 SOAP-ENV:Client

The SOAP-ENV:Client response includes a MerchantException faultcode indicating that the Web
Service API has found an error with the transaction you submitted. The MerchantException
indicates that the XML or authorization data provided by the merchant is faulty. This may have
one of the following reasons:

¶ Your store is registered as being closed. If you receive this message even though you
believe, your store should be registered as Open, contact support.

¶ The store ID / user ID combination you have provided for HTTPS authorization is
syntactically incorrect.

¶ The XML does not match the schema.

The MerchantException message has the following format:

<?xml version="1.0" encoding="UTF - 8"?>

<SOAP- ENV:Envelope

 xmlns:SOAP - ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP- ENV:Header />

 <SOAP- ENV:Body>

 <SOAP- ENV:Fault>

 <faultcode>SOAP - ENV:Client</faultcode>

 <faultstring xml:lang="en - US">

 MerchantException

 </faultstring>

 <detail>

 <! -- detailed explanation. -- >

 </detail>

 </SOAP- ENV:Fault>

 </SOAP- ENV:Body>

</SOAP- ENV:Envelope>

The SOAP SOAP-ENV:Envelope/SOAP-ENV:Body/SOAP-ENV:Fault contains the following
elements:

ELEMENT DATA TYPE DESCRIPTION

faultcode xs:string This value is always:

SOAP-ENV:Client

faultstring xs:string This value is always:

MerchantException

detail/reason xs:string The Web Service API returns a minimum of one
reason.

See 20.1 Merchant Exceptions on page 94 for detailed descriptions of errors.

10 Analyzing the Transaction Response

10.1 Approval Response

If your transaction is approved, the First Data Global Gateway Web Service API returns a SOAP
response message. The body of the message contains an
fdggwsapi:FDGGWSApiOrderResponse or fdggwsapi:FDGGWSApiActionResponse element.

The following table describes the sub-elements of the fdggwsapi:FDGGWSApiOrderResponse
element. The Web Service API always returns all of the elements listed below; however, some of
the elements may be empty.

ELEMENT DATA TYPE DESCRIPTION

fdggwsapi:

CommercialServiceProvider

xs:string Indicates your provider

fdggwsapi:TransactionTime xs:string The time stamp set by the First Data
Global Gateway Web Service API
before returning the transaction
approval.

fdggwsapi:

ProcessorReferenceNumber

xs:string The reference number returned by
the processor. This value may be
empty, and is not needed in further
transactions. This value may be
needed if you have to contact
support regarding a transaction.

fdggwsapi:

ProcessorResponseMessage

xs:string In case of an approval, this element
contains the following string:

APPROVED

fdggwsapi:

ProcessorResponseCode

xs:string Response Code from the credit card
processor

fdggwsapi:

ProcessorApprovalCode

xs:string Approval Code from the credit card
processor

fdggwsapi:ErrorMessage xs:string Error Message. This element is
empty in case of an approval.

fdggwsapi:OrderId xs:string This element contains the order ID.
For Sale, PreAuth, ForceTicket, and
Credit transactions, a new order ID is
returned. For PostAuth, Return, and
Void transactions, supply this
number in the v1:OrderId element for
identifying the transaction to which
you refer. The fdggwsapi:OrderId
element of a response to a PostAuth,
Return, or Void transaction simply
returns the order ID of the original
transaction. The OrderId generated
by Web Service can have a
maximum of 100 digits.

The First Data Global Gateway Web
Service API only accepts ASCII
characters. The Order ID cannot
contain the following characters: &,
%, /, or exceed 100 characters in
length. The Order ID will be
restricted in such a way so that it can
only accepts alpha numeric (a-z, A-Z,
0-9) and some special characters for
merchants convenience. The allowed
special characters are given below.

¶ Hash (#)

¶ Underscore (_)

¶ Hyphen (-)

¶ At the rate (@)

¶ Dot (.)
¶ Colon (:)
¶ Space ()

fdggwsapi:ApprovalCode xs:string The approval code returned by the
processor. This value may be empty,
and is not needed in further
transactions. This value may be
needed if you have to contact
support regarding a transaction.

fdggwsapi:AVSResponse xs:string Address Verification System (AVS)
response

fdggwsapi:TDate xs:string The TDate required for Void
transactions. Only returned for Sale,
ForcedTicket, and PostAuth.

fdggwsapi:TransactionResult xs:string The transaction result. Always
APPROVED in case of an approval.

fdggwsapi:TransactionID xs:string The Transaction ID used for this
transaction.

fdggwsapi:CalculatedTax xs:string Calculated tax for the transaction

fdggwsapi:CalculatedShipping xs:string Calculated shipping for the
transaction.

fdggwsapi:TransactionScore xs:string A numerical value indicating the risk
of fraud on the transaction. Higher
values indicate a greater risk of
fraud. The actual range used for this
field has not yet been defined.

This field is only returns a value for
merchants who use the optional,
add-on Fraud Service.

fdggwsapi:

AuthenticationResponseCode

xs:string Response code returned by
processor for 3D Secure
transactions. See the 3DS
integration guide for values and
definitions.

This field only returns a value for 3D
Secure transactions for merchants
who use this optional, add-on
service.

fdggwsapi : FraudAction xs:string This element can contain any of the
below value.
[ACCEPT, REJECT and REVIEW]

10.2 Failure Response

If your transaction is declined or your action is rejected, the First Data Global Gateway Web
Service API returns an fdggwsapi:FDGGWSApiOrderResponse or
fdggwsapi:FDGGWSApiActionResponse element. The elements returned are the same as in the
case of a successful transaction request. Only the values differ.

The following table describes the sub-elements of the fdggwsapi:FDGGWSApiOrderResponse
element. The Web Service API always returns all of the elements listed below; however, some of
the elements may be empty.

ELEMENT DATA TYPE DESCRIPTION

fdggwsapi:

CommercialServiceProvider

xs:string Indicates your provider

ELEMENT DATA TYPE DESCRIPTION

fdggwsapi:TransactionTime xs:string The time stamp set by the First Data
Global Gateway Web Service API
before returning the transaction
approval.

fdggwsapi:

ProcessorReferenceNumber

xs:string Reference Number ó000000ô returned
by the processor. This value may be
empty, and is not needed in further
transactions. This value may be
needed if you have to contact support
regarding a transaction.

fdggwsapi:

ProcessorResponseMessage

xs:string Error Message returned by the
processor. This value might be
empty.

fdggwsapi:

ProcessorResponseCode

xs:string Response Code from the credit card
processor

fdggwsapi:

ProcessorApprovalCode

xs:string Approval Code from the credit card
processor

fdggwsapi:ErrorMessage xs:string Error message returned by the First
Data Global Gateway Web Service
API. Returned in the format SGS-
XXXXXX: Message, where XXXXXX
is a six-digit error code and Message
describing the error. This description
might be different from the processor
response message. For instance, in
the above example the follow error
message is returned:

SGS-002304: Credit card is expired

You may need this value if you have
to contact support regarding a
transaction.

ELEMENT DATA TYPE DESCRIPTION

fdggwsapi:OrderId xs:string The Order ID. In contrast to an
approval, this Order ID is never
required for any further transaction,
but you may need this value if you
have to contact support regarding a
transaction. The Order ID generated
by Web Service can have a maximum
of 100 digits.

The First Data Global Gateway Web
Service API only accepts ASCII
characters. The Order ID cannot
contain the following characters: &,
%, /, or exceed 100 characters in
length. The Order ID will be
restricted in such a way so that it can
only accepts alpha numeric (a-z, A-Z,
0-9) and some special characters for
merchants convenience. The allowed
special characters are given below.

¶ Hash (#)

¶ Underscore (_)

¶ Hyphen (-)

¶ At the rate (@)

¶ Dot (.)
¶ Colon (:)
¶ Space ()

fdggwsapi:ApprovalCode xs:string This element is empty in case of a
transaction failure.

fdggwsapi:AVSResponse xs:string Returns the Address Verification
System (AVS) response

NULL in declined transactions

fdggwsapi:TDate xs:string The TDate. Similar to the Order ID,
the TDate is never required for any
further transaction, but you may need
this value if you have to contact
support regarding a transaction.

ELEMENT DATA TYPE DESCRIPTION

fdggwsapi:TransactionResult xs:string Valid values are:

DECLINED ï the processor rejected
the transaction, for example, for
insufficient funds

DUPLICATE ï the OrderID is has
been used previously

FRAUD ï fraud detected in the
transaction

FAILED ï internal error at the
Gateway

fdggwsapi:TransactionID xs:string Transaction ID used for this
transaction

fdggwsapi:CalculatedTax xs:string Calculated tax for the transaction

fdggwsapi:CalculatedShipping xs:string Calculated shipping for the
transaction.

fdggwsapi:TransactionScore xs:string A numerical value indicating the risk
of fraud on the transaction. Higher
values indicate a greater risk of fraud.
The actual range used for this field
has not yet been defined.

This field is only returns a value for
merchants who use the optional, fee-
based fraud service.

fdggwsapi:

AuthenticationResponseCode

xs:string Returns a code in case of a
transaction failure.

11 Building an HTTPS POST Request

Generally, the tools you use to communicate with the First Data Global Gateway Web Service
API support the building of HTTPS POST requests. This document describes the process for
doing this using the tools tested by First Data for accessing the Web Service API. If you are
using another tool, consult the documentation

The following table describes the values you need to build an HTTPS POST request:

PARAMETE
R

VALUE DESCRIPTION

URL https://

ws.firstdataglobalgateway.com/ fdggwsapi/ se

rvices

This is the full URL of the
First Data Global Gateway
Web Service API.
Depending on the
functionality you use for
building HTTP requests,
you might have to split
this URL into host and
service and provide this
information in the
appropriate HTTP request
headers.

Content-
Type

text/xml Indicates that the SOAP
message is encoded in
XML and passed as
content in the HTTP
POST request body.

Authorization Type: Basic

Username:

WS<store ID>._.1

Password: Password

Identifies your store at the
First Data Global Gateway
Web Service API.

The Authorization
parameter takes the
following format:

Authorization: Basic
<authstring>

where <authstring> is the
base-64 encoded result of
the string
<userid>:<password>.

For example, if your user

name is WS101 ._.1 , and

your password myPW, the

complete HTTP
authorization header
would be:

Authorization: Basic

V1MxMDEuXy4wMDc6bXlQV

w==

The authorization string is
the base 64 encoding
result of the string

WS101._.1 :myPW.

HTTP Body SOAP request XML The HTTP POST request
body contains SOAP
request message.

11.1 PHP

You can use either the cURL library or the cURL command-line tool to communicate with the
Web Service API using PHP. In recent PHP versions, the cURL library is included as an
extension, which needs to be activated. While this is a straightforward task on Windows servers,
it may require you to compile PHP on Unix/Linux machines. In this case, it may be easier to call
the cURL command line tool from your PHP script.

11.1.1 Using the cURL PHP Extension

In PHP 5.2.9-2, activating the cURL extension simply requires you to uncomment the following
line in your php.ini file:

;extension=php_curl.dll

Other PHP versions might require other actions in order to enable cURL. See your PHP
documentation for more information. After activating cURL, use the following code to set up an
HTTPS POST request:

<?php

// storing the SOAP message in a variable ï note that the plain XML code

// is passed here as string for reasons of simplicity, however, it is

// certainly a goo d practice to build the XML e.g. with DOM ï furthermore,

// when using special characters, you should make sure that the XML string

// gets UTF - 8 encoded (which is not done here):

$body = "<SOAP - ENV:Envelope ...>...</SOAP - ENV:Envelope>";

// initializing cURL with the FDGGWS API URL:

$ch =

curl_init(" https:// ws.firstdataglobalgateway.com/ fdggwsapi/ services/order.

wsdl ");

// setting the request type to PO ST:

curl_setopt($ch, CURLOPT_POST, 1);

// setting the content type:

curl_setopt($ch, CURLOPT_HTTPHEADER, array("Content - Type: text/xml"));

// setting the authorization method to BASIC:

curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_BASIC);

// supplying your credentials:

curl_setopt($ch, CURLOPT_USERPWD, "WS101 ._.1 :myPW");

// filling the request body with your SO AP message:

curl_setopt($ch, CURLOPT_POSTFIELDS, $body);

...

?>

The next chapter discusses setting the security options, which are necessary for enabling SSL
communication.

11.1.2 Using the cURL Command Line Tool

If you choose to use the cURL command line tool, you do not need to perform any setup. The
following script shows you how to call the command line tool from your PHP script and set the
HTTPS POST request:

<?php

// storing the SOAP message in a variable ï note that you have to escape

/ / " and \ n, since the latter makes the command line tool fail,

// furthermore note that the plain XML code is passed here as string

// for reasons of simplicity, however, it is certainly a good practice

// to build the XML e.g. with DOM ï finally, when us ing special

// characters, you should make sure that the XML string gets UTF - 8

// encoded (which is not done here):

$body = "<SOAP - ENV:Envelope ...>...</SOAP - ENV:Envelope>";

// setting the path to the cURL command line tool ï adapt this path to

// the path where you have saved the cURL binaries:

$path = "C: \ curl \ cur l.exe";

// setting the FDGGWS API URL:

$apiUrl =

(" https:// ws.firstdataglobalgateway.com/ fdggwsapi/ services/order.wsdl ") ;

// setting the conte nt type:

$contentType = " -- header \ "Content - Type: text/xml \ "";

// setting the authorization method to BASIC and supplying

// your credentials:

$user = " -- basic -- user WS101 ._.1 :myPW";

// setting the request body with your SOAP message ï this automatically

// marks the request as POST:

$data = " -- data \ "".$body." \ "".

...

?>

11.2 ASP

WinHTTP 5.1 is included with Windows Server 2003 and Windows XP SP2. Use the following
code to set up an HTTPS POST request:

<%@ language="javascript"%>

<html>...<body >

<%

// storing the SOAP message in a variable ï note that the plain XML code

// is passed here as string for reasons of simplicity, however, it is

// certainly a good practice to build the XML e.g. with DOM ï

// furthermore, when using special characters, you should make sure that

// the XML string gets UTF - 8 encoded (which is not done here):

var body = "<SOAP - ENV:Envelope ...>...</SOAP - ENV:Envelope>";

// constructing the request object:

var request = Server.createObject("WinHttp.WinHttpRequest.5.1");

// initializing the request object with the HTTP method POST

// and the FDGGWS API URL:

request.open("POS T",

" https:// ws.firstdataglobalgateway.com/ fdggwsapi/ services/order.wsdl ") ;

// setting the c ontent type:

request.setRequestHeader("Content - Type", "text/xml");

// setting the credentials:

request.setCredentials(" WS111901._.1 ", " aTenvip B ", 0);

...

%>

</body></html>

The sample code fragment is written in JavaScript; using VB Script instead does not
fundamentally change the code.

12 Establishing an SSL connection

You must establish a secure communication channel to send the HTTP request built in the
previous chapter. This ensures that the data sent between your client application and the First
Data Global Gateway Web Service API is encrypted and that both parties can be sure they are
communicating with each other and no one else.

The Web Service API requires an SSL connection with client and server exchanging certificates
to guarantee this level of security. The client and server certificates each uniquely identify the
party. This process works as follows:

1. The client begins the process by sending its client certificate to the server.
2. The server receives the client certificate and verifies it against the client certificate it has

stored for this client.
3. If valid, the server responds by sending its server certificate.
4. The client receives the server certificate and verifies it against the trusted server

certificate.
5. If valid, both parties establish the SSL channel, as they can be sure that they are

communicating with each other and no one else. All data exchanged between both
parties is encrypted.

Following this process, your application has to do two things: First, start the communication by
sending its client certificate. Second, verify the received server certificate. How this is
accomplished differs from platform to platform. However, in order to illustrate the basic concepts,
the PHP and ASP scripts started in the previous chapter will be continued by extending them
with the relevant statements necessary for setting up an SSL connection.

12.1 PHP

Again, you can choose to use either the cURL extension or the cURL command line tool to
integrate with the Web Service API using PHP. cURL requires the client certificate to be passed
as a PEM file, the client certificate private key passed as a separate file, and the client certificate
private key password to be supplied. While the private key is not technically necessary for
establishing an SSL connection, it is required for doing so with cURL and PHP.

12.1.1 Using the PHP cURL Extension

The following code sample extends the script started in the previous chapter. The sample code
shows how to supply the parameters necessary for establishing an SSL connection with the
cURL extension:

<?php

...

// configuring cURL not to verify the server certificate:

curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 0);

// setting the path where cURL can find the client certificate:

curl_setopt($ch, CURLOPT_SSLCERT, "C: \ certs \ WS101._.1 .pem");

// setting the path where cURL can find the client certificateôs

// private key:

curl_setopt($ch, CURLOPT_SSLKEY, "C: \ certs \ WS101._.1 .key");

// setting the key password:

curl_setopt($ch, CURLOPT_SSLKEYPASSWD, " ckp_1256591851 ");

...

?>

The next chapter discusses sending the message and receiving the response.

12.1.2 Using the cURL Command Line Tool

The following code sample extends the script started in the previous chapter. The sample code
shows how to supply the parameters necessary for establishing an SSL connection with the
cURL command line tool:

<?php

...

// configuring cURL not to verify the server certificate:

$serverCert = ñ ïk ñ;

// setting the path where cURL can find the client certificate:

$clientCert = ñ ï- cert C: \ certs \ WS101._.1.pem ò;

// setting the path where cURL can find the client certificateôs

// private key:

$clientKey = " -- key C: \ cer ts \ WS101._.1 .key";

// setting the key password:

$keyPW = " -- pass ckp_1256591851 ";

...

?>

The next chapter discusses sending the message and receiving the response.

12.2 ASP

Before you can communicate using SSL with the First Data Global Gateway Web Service API,
you must install both client certificates in the certificate store. See 21 Installing the Client
Certificate on page 101 for instructions on installing the client certificate.

The following code sample extends the script started in the previous chapter. The sample code
shows how to set the path for WinHTTP to find the client certificate:

<%@ language="javascript"%>

<html>...<body >

<%

...

// setting the path where the client certificate to send can be found:

request.setClientCertificate("LOCAL_MACHINE \ \ My\ \ WS101._.1 ");

...

%>

</body></html>

If you use VBScript instead of JavaScript, you must replace the double-backslashes in the path
with single backslashes.

The next chapter discusses sending the message and receiving the response.

13 Sending the HTTPS POST Request and Receiving the Response

The final step in writing your client is sending the HTTPS POST request to the First Data Global
Gateway Web Service API and receiving the response. Most HTTP libraries cover the underlying
communication details and require only a single call that returns the HTTP response.

The First Data Global Gateway Web Service API returns a 200 status code and a SOAP
response in response to a successful HTTP POST request. If you send any invalid HTTP POST
parameters, the First Data Global Gateway Web Service API will return a standard HTTP error
code. If you send invalid data (for example, an invalid credit card number) in the SOAP request
message, the Web Service API will return a 500 status code and a SOAP fault message.

See 9 Reading the SOAP Response Message on page 51 for instructions on reading the SOAP
response message.

13.1 PHP

Again, you can choose to use either the cURL extension or the cURL command line tool to
integrate with the Web Service API using PHP.

13.1.1 Using the PHP cURL Extension

The sample code below shows how to complete the PHP cURL extension script by making the
HTTPS POST request and receiving the response.

<?php

...

// telling cURL to return the HTTP resp onse body as operation result

// value when calling curl_exec:

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

// calling cURL and saving the SOAP response message in a variable which

// contains a string like " <SOAP- ENV:Envelope ...>... </SOAP-

ENV:Envelope >":

$result = curl_exec($ch);

// closing cURL:

curl_close($ch);

?>

The HTTPS call returns a SOAP response or fault message in the HTTP response body.

13.1.2 Using the cURL Command Line Tool

Performing the HTTPS POST request with the cURL command line tool simply requires
executing the cURL command with the PHP exec command. The PHP exec command saves
each line returned by an external program as an element of an array. Therefore, to get the
complete HTTP response body, you must concatenate the elements of the array.

The sample code below shows how to complete the PHP cURL extension script by making the
HTTPS POST request and receiving the response.

<?php

...

// saving the whole command in one variable:

$curl = $path.

$data.

$contentType.

$user.

$serverCert.

$clientCert.

$clientKey.

$keyPW.

$apiUrl;

// preparing the array containing the lines returned by the cURL

// command line tool:

$returnArray = array();

// performing the HTTP call by executing the cURL command line tool:

exec($curl, $ret urnArray);

// preparing a variable taking the complete result:

$result = "";

// concatenating the different lines returned by the cURL command

// line tool ï this result in the variable $result carrying the entire

// SOAP response message as string:

foreach($returnArray as $item)

$result = $result.$item;

?>

13.2 ASP

The sample code below shows how to complete the ASP script by calling the requestôs send
method, with the SOAP XML as a parameter.

<%@ language="javascript"%>

<html>...<body >

<%

...

// doing th e HTTP call with the SOAP request message as input:

request.send(body);

// saving the SOAP response message in a string variable:

var response = request.responseText;

%>

</body></html>

After the request is completed, you can access the response body through the responseText
property of the request.

14 Using .NET Framework

First Data has tested the First Data Global Gateway Web Service API with the C# 2.0 .NET
Framework.

14.1 Prerequisites

First, you need to install the client certificate (WS<Store_ID>._.1.p12). See 21 Installing the
Client Certificate on page 101 for instructions on installing the client certificate.

The user executing the program has access to the certificate after installation. To do so, first
download the WinHttpCertCfg tool from Microsoft. Use the following URL:

http://www.microsoft.com/downloads/details.aspx?familyid=c42e27ac - 3409 -

40e9 - 8667 - c748e422833f&displaylang=en

To grant access to the user, using the command line, navigate to the directory where you
installed WinHttpCertCfg and enter the following command:

winhttpcertcfg.exe - g - a OtherUserID - c LOCAL_MACHINE\ MY - s WSstoreid._.1.p12

OtherUserID is the name of the user executing the application. WSstoreid._.1.p12 is the

name of the client certificate. Replace this value with the name of your client certificate. The
name should be in the format WS<store_ID>._.1. Verify this value when you install the client
certificate using the instructions above.

You must also install the Web Service Enhancements (WSE) 3.0 for Microsoft .NET. Use the
following URL to view the system requirements and download the installer:

http://www.microsoft.com/downloads/details.aspx?FamilyID=018a09fd - 3a74 -

43c5 - 8ec1 - 8d789091255d&displaylang=en

http://www.microsoft.com/downloads/details.aspx?familyid=c42e27ac-3409-40e9-8667-c748e422833f&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=c42e27ac-3409-40e9-8667-c748e422833f&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=018a09fd-3a74-43c5-8ec1-8d789091255d&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=018a09fd-3a74-43c5-8ec1-8d789091255d&displaylang=en

14.2 Creating Web Service Reference Classes in .NET

To create the web service reference classes for your project in .NET, follow these steps:

1. Right-click on the project in the Solution Explorer and select Add Web Reference.

é

2. Download the wsdl from the below location.
https://ws.firstdataglobalgateway.com/fdggwsapi/services/order.wsdl

3. Download the schemas from the below location.

a. https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us/v1.xsd
b. https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us/a1.xsd
c. https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us/fdggwsapi.xsd

4. The following dialog displays. Enter the location of the WSDL file in the URL field.

The root schema imports the other two schemas (v1 and a1) using relative URLs as
shown in the code below. The directory structure for your application needs to match the
directory structure shown in the schema file.

<xs:import namespace=" http:// secure.linkpt.net /fdggwsapi/schemas_us/v1"

schemaLocation=" ../schemas_us/v 1.xsd " />

<xs:import namespace=" http:// secure.linkpt.net /fdggwsapi/schemas_us/a1"

schemaLocation=" ../schemas_us/a1.xsd " />

If you have saved the WSDL file at C:\FDGGWSClient\wsdl\order.wsdl, save the XSD
files in the path C:\FDGGWSClient\schemas_us\.

https://ws.firstdataglobalgateway.com/fdggwsapi/services/order.wsdl
https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us/v1.xsd

Click Go, next to the URL field.

5. You can change the name of the web reference by editing the Web reference name

field. Click Add Reference.

6. In the Project Solution Explorer, press the middle button (circled in the image below) to
displays the files created:

7. Now you can create an instance of the client web service class in your code, using the
following format:

FDGGWSApiOrderService oFDGGWSApiOrderService = new

FDGGWSApiOrderService();

14.3 Writing the .NET Client

The sample code below shows a C# .NET client.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using FDGGWSClient.FDGGWSRef;

using System.Security.Cryptography.X509Certificates;

using System.Net;

namespace FDGGWSClient

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private void button1_Click(object sender, EventArgs e)

 {

 ServicePointM anager.Expect100Continue = false;

// Initialize Service Object FDGGWSApiOrderServi ce

oFDGGWSApiOrderService =

 new FDGGWSApiOrderService();

// Set the WSDL URL

 oFDGGWSApiOrderService.Url =

 @"

https:// ws.firstdataglobalgateway.com/ fdggwsapi/ servic es/order.wsdl ò,

// Configure Client Certificate

 oFDGGWSApiOrderService.ClientCertificates.Add

 (X509Certificate.CreateFromCertFile

 ("C:/FDGGWSClient/WS111901._.1.pem"));

// Set the Authentication Credentials

 NetworkCredenti al nc =

 new NetworkCredential("WS111901._.1", "JS2ND7Dc");

 oFDGGWSApiOrderService.Credentials = nc;

// Create Sale Transaction Request

 FDGGWSApiOrderRequest oOrderRequest =

 new FDGGWSApiOrderRequest();

 Transaction oTransaction = new Transaction();

 CreditCardTxType oCreditCardTxType = new CreditCardTxType();

 oCreditCardTxType.Type = CreditCardTxTypeType.sale;

 CreditCardData oCreditCardData = new CreditCardDa ta();

 oCreditCardData.ItemsElementName =

 new ItemsChoiceType[] { ItemsChoiceType.CardNumber,

 ItemsChoiceType.ExpMonth, ItemsChoiceType.ExpYear };

 oCreditCardData.Items = new string[]

 { "4012000033330026", "12", "12" };

 oTransaction.Items = new object[]

 { oCreditCardTxType, oCreditCardData };

 Payment oPayment = new Payment();

 oPayment.ChargeTotal = 120;

 oTransaction.Payment = oPayment;

 oOrderRequest.Item = oTransaction;

 // Get the Response

 FDGGWSApiOrderResponse oReponse = null;

 try

 {

 oReponse =

 oFDGGWSApiOrderService.FDGGWSApiOrder(oOrderRequest);

 string sApprovalCode = oReponse.Transact ionResult;

 this.textBox1.Text = oReponse.TransactionResult;

 }

 catch (System.Web.Services.Protocols.SoapException ex)

 {

 // Catch the Exception

 }

 }

 }

}

15 Using a Java Framework

First Data has tested the First Data Global Gateway Web Service API with the following Java
frameworks:

¶ Axis Framework (version 2-1.5)

¶ Spring-WS (version 1.5.7)

The following sections discuss integrating with the Web Service API using these frameworks.

15.1 Axis Framework

The Axis Framework is a framework for building applications that create and process SOAP
messages. This section discusses how to use the Axis Framework to connect with the First Data
Global Gateway Web Service API.

The Axis Framework provides the WSDL2Java tool which creates stub code based on WSDL
files.

15.1.1 Client Certificate Configuration

Before using the WSDL2Java tool, you must configure the tool to use the client certificate. To
configure the WSDL2Java tool, open the wsdl2java.bat/wsdl2java.sh and add the following Java
run-time optional parameter:

For wsdl2java.bat:

SET JAVA_OPTS=%JAVA_OPTS% -

Djavax.net.ssl.keyStore=<client_certificate_install_absolute_path>/WS<stor

e_id>._.1.ks

SET JAVA_OPTS=%JAVA_OPTS% -

Djavax.net.ssl.keyStorePassword=<keystore_password>

For wsdl2java.sh:

JAVA_OPTS=ò$JAVA_OPTS -

Djavax.net.ssl.keyStore=<client_certificate_install_absolute_path>/WS<stor

e_id>._.1.ksò

JAVA_OPTS=ò$JAVA_OPTS -

Djavax.net.ssl.keyStorePassword=<keystore_password >ò

15.1.2 Generating Client Stubs

The WSDL2Java tool can be found in Axisô bin directory. To create the client stubs, enter the
following command:

wsdl2java.bat - uri <WSDL URL> - S <destination folder for stub classes >

15.1.3 Writing the Axis Client

After generating the stubs, the next step is to write the client program that sends and receives
the SOAP requests and responses.

The following sample program makes an Order request for the Sale Transaction.

// all imports go here

public class FDGGWSAxis Client {

public static void main (String args[]) {

//the keystore file and password used on the next 2 lines are found within

the store CERT files archive

//which may be download via Virtual Terminal (under Support - Download

Center)

System.setProperty("javax.net.ssl.keyStore",

"<<PATH_TO_CLIENT_CERT_KEYSTORE_FILE>>");

System.setProperty("javax.net.ssl.keyStorePassword",

"<<KEYSTORE_PASSWORD>>");

HttpTransportProperties.Authenticator auth = new

HttpTransportProperties.Authenticator();

auth.setPreempt iveAuthentication(true);

//the following username and password values come from the WS<store

name>._.1.auth.txt file

//which is found inside the store CERT files archive that may be download

via Virtual Terminal (under Support - Download Center)

auth.se tUsername("WS<<STORE_NAME>>._.1");

auth.setPassword("<<STORE_PASSWORD>>");

FDGGWSApiOrderServiceStub fdggWsStub = new FDGGWSApiOrderServiceStub();

Options options = fdggWsStub._getServiceClient().getOptions();

options.setProperty(HTTPConstants.AUTHENTICATE, auth);

Type_type1 sale_type = Type _type1.value6;

CreditCardTxType creditCardTxType = new CreditCardTxType();

creditCardTxType.setType(sale_type);

CardNumber_type1 cardNumber_type1 = new CardNumber_type1 ();

cardNumber_type1.setCardNumber_type0("4012000033330026");

ExpMonth_type1 expMonth_type1 = new ExpMonth_type1();

expMonth_type1.setExpMonth_type0("12");

ExpYear_type1 expYear_type1 = new ExpYear_type1();

expYear_type1.setExpYear_type0("12");

Card c ard = new Card();

card.setCardNumber(cardNumber_type1);

card.setExpMonth(expMonth_type1);

card.setExpYear(expYear_type1);

CreditCardDataSequence_type0 creditCardDataSequence_type0 = new

CreditCardDataSequence_type0();

creditCardDataSequence_type0.setCar d(card);

CreditCardDataChoice_type0 dataChoice = new CreditCardDataChoice_type0();

dataChoice.setCreditCardDataSequence_type0(creditCardDataSequence_type0);

CreditCardData creditCardData = new CreditCardData();

creditCardData.setCreditCardDataChoice_type0(dataChoice);

BigDecimal bigDecimal = new BigDecimal("10");

ChargeTotal_type1 chargeTotal_type1 = new ChargeTotal_type1();

chargeTotal_type1.setChargeTotal_type0(bigDecimal);

Amount amount = new Amount();

amount.setChargeTotal(chargeTotal_type1);

Payment_type0 payment_type0 = new Payment_type0();

payment_type0.setAmount(amount);

Payment payment = new Payment();

payment.setPayment(payment_type0);

TransactionSequence_type0 transactionSequence_type0 = ne w

TransactionSequence_type0();

transactionSequence_type0.setCreditCardTxType(creditCardTxType);

transactionSequence_type0.setCreditCardData(creditCardData);

TransactionChoice_type0 transactionChoice_type0= new

TransactionChoice_type0();

transactionCho ice_type0.setTransactionSequence_type0(transactionSequence_t

ype0);

Transaction t = new Transaction();

t.setTransactionChoice_type0(transactionChoice_type0);

t.setPayment(payment_type0);

FDGGWSApiOrderRequest fdggwsApiOrderRequest = new FDGGWSApiOrderRequest();

fdggwsApiOrderRequest.setTransaction(t);

FDGGWSApiOrderResponse response =

fdggwsstub.fDGGWSApiOrder(fdggwsApiOrderRequest);

System.out.println("The Transaction Result is

"+response.getFDGGWSApiOrderResponse().getTransactionR esult());

System.out.println("The Order ID is

"+response.getFDGGWSApiOrderResponse().getOrderId());

log("The transaction result is " +response.getTransactionResult());

log("The order id is " +response.getOrderId());

}

}

16 SSL and HTTP Authentication

16.1.1.1 SSL

Your application must provide the client certificate for security.

The following code sample shows how to provide the client certificate.

// Needed for Client Certific ate

System.setProperty("javax.net.ssl.keyStore",

"<<PATH_TO_THE_CLIENT_CERT_KEYSTORE FILE>>");

System.setProperty("javax.net.ssl.keyStorePassw ord",

"<<KEYSTORE_PASSWORD>>");

16.1.1.2 HTTP Authentication

The First Data Global Gateway Web Service API requires HTTP basic authorization on all calls
to the web service.

The following code sample shows how to pass the user name and password for HTTP basic
authorization.

Options options = ipgstub._getServiceClient().getOptions();

 HttpTransportProperties.Authenticator auth = new

HttpTransportProperties.Authenticator();

 auth.setPreemptiveAuthentication(true);

 auth.setUsername("WS111920 ._.1 ");

 auth.setPassword(" 0WRtTq1K");

 options.setProperty(HTTPConstants.AUTHENTICATE,auth);

16.2 Spring Web Services

Spring Web Services (Spring-WS) is designed for XML-based access to web services and
supports the use of marshallers and unmarshallers. It enables your application to be coded
solely using Java objects.

WebServiceTemplate is the core class for client-side web service access in Spring-WS. It
contains methods for sending Source objects and receiving response messages as either
Source or Result objects. Additionally, it can marshal objects to XML before sending them and
unmarshal any response XML into an object again

16.2.1 Client Configuration

The following code sample shows the required configuration settings that go in the
applicationContext.xml file.

<?xml version="1.0" encoding="UTF - 8"?>

<beans xmlns= http://www.springframework.org/schema/beans

xmlns:xsi="http://www.w3.org/2001/XMLSchema - instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring - beans - 2.0.xsd">

http://www.springframework.org/schema/beans

<bean id="messagFactory"

class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

<bean id="abstractClient" abs tract="true">

 <constructor - arg ref="messagFactory"/>

 <property name="destinationProvider">

 <bean class="org.springframework.ws.client.

 support.destination.Wsdl11DestinationProvider">

 <property name="wsdl" value=

" https:// ws.firstdataglobalgateway.com/services/order.wsdl "/>

 </bean>

 </property>

</bean>

<bean id="marshaller"

class="org.springframework.oxm.xmlbeans.XmlBeansMarshaller"/>

<bean id="httpClientParams"

class="org. apache.commons.httpclient.params.HttpClientParams">

 <property name="authenticationPreemptive" value="true"/>

<property name="connectionManagerClass"

value="org.apache.commons.httpclient.MultiThreadedHttpConnectionManager"/>

</bean>

<bean id="httpClien t" class="org.apache.commons.httpclient.HttpClient">

 <constructor - arg ref="httpClientParams"/>

</bean>

<bean id="credentials"

class="org.apache.commons.httpclient.UsernamePasswordCredentials">

 <constructor - arg value="WS111901._.1"/>

 <constructor - arg value="qRAPL6FY"/>

</bean>

<bean id="messageSender"

class="org.springframework.ws.transport.http.CommonsHttpMessageSender">

 <constructor - arg ref="httpClient"></constructor - arg>

 <property name="credentials" ref="credentials"/>

</bean>

<bean id="fdggw sapiorder" parent="abstractClient"

class="com.firstdata.fdggwsapi.client.FDGGWSAPIOrder">

 <property name="marshaller" ref="marshaller"/>

 <property name="unmarshaller" ref="marshaller"/>

 <property name="messageSender" ref="messageSender"/>

</bean>

</bea ns>

The WebServiceTemplate class uses a URI as the message destination. The defaultUri property
lets you specify the destination URI. Spring-WS creates a WebServiceMessageSender for the
URI, which is responsible for sending the XML message. You can set one or more message

senders using the messageSender or messageSenders properties of the WebServiceTemplate
class.

The following WebServiceMessageSender interfaces are available for sending messages via
HTTP:

¶ HttpUrlConnectionMessageSender

¶ CommonsHttpMessageSender

The configuration sample above shows how to use CommonsHttpMessageSender to
authenticate to the FDGG Web Service.

In addition to a message sender, the WebServiceTemplate requires a Web service message
factory. The code in the following sections uses SaajSoapMessageFactory. This is the default
used by Spring-WS, if a message factory is not specified via the messageFactory property.

16.2.2 Writing the Spring Client

WebServiceTemplate contains many convenience methods to send and receive web service
messages. There are methods that accept and return a Source and those that return a Result.
Additionally there are methods, which marshal and unmarshal objects to XML.

The preferred method of for creating messages and reading responses is to use the object/XML
mapping provided by Spring-WS. The following three sections provide instructions for using
object/XML mapping. If you must work directly with XML, see 16.2.2.4 Sending Direct XML
Request on page 87 for instructions.

16.2.2.1 Configuring Object/XML Mapping

In order to facilitate the sending of plain Java objects, the WebServiceTemplate has a number of
send methods that take an object as an argument. The marshalSendAndReceive method in the
WebServiceTemplate class delegates the conversion of the request object to XML to a
marshaller and the conversion of the response XML to an object to an unmarshaller. In order to
use the marshalling functionality, you have to set values for the marshaller and unmarshaller
properties of the WebServiceTemplate class. Spring provides support for the object/XML
mapping through its org.springframework.oxm framework.

The following sample code shows how to set
org.springframework.oxm.xmlbeans.XmlBeansMarshaller as the marshaller/unmarshaller in the
applicationContext.xml file:

<bean id="marshaller"

class="org.springfram ework.oxm.xmlbeans.XmlBeansMarshaller"/>

<bean id="fdggwsapiorder" parent="abstractClient"

class="com.firstdata.fdggwsapi.client.FDGGWSAPIOrder">

 <property name="marshaller" ref="marshaller"/>

 <property name="unmarshaller" ref="marshalle r"/>

</bean>

16.2.2.2 Generating XMLBean classes

Now you must generate Java objects based on the First Data Global Gateway Web Service API
schema files. This allows you to work directly with Java objects when writing the client
application.

To generate the Java objects, follow these steps:

¶ Download the following schema files and save them in a folder called schemas_us.

https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_ us /fdggwsa

pi.xsd

https:// ws.firstdataglobalgateway.com /fdggwsapi/schemas_us /v1.xsd

https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us /a1.xsd

¶ Provide the root schema as the parameter for the xmlbean ANT task as below.
<taskdef name="xmlbean" classname="org.apache.xmlbeans.impl.tool.XMLBean"

classpathref="classpath"/>

<xmlbean schema=" fdggws api.xsd" srcgendir="${gen.dir}"

classgendir="${bin.dir} " classpathref="classpath" download="true"/>

¶ The root schema imports the other two schemas (v1 and a1) using relative URLs as
shown in the code below. The directory structure on for your application needs to match
the directory structure shown in the schema file.

<xs:import namespace=" http://secure.linkpt.net/fdggwsapi/schemas_us/v1"

schemaLocation="../schemas_us/v1.xsd" />

<xs:import namespace=" http://secure.linkpt.net/fdggwsapi/schemas_us/a1"

schemaLocation="../schemas_us/a1.xsd" />

To compile the schemas into XML beans, you need to download XMLBeans 2.2.0. See the
following site for installation instructions:

http://xmlbeans.apache.org/documentation/conInstallGuide.html

You can generate the classes using one of the following tools:

¶ scomp

¶ XMLBean Ant task

To generate the classes using the XMLBeans scomp tool (located in the XMLBeans bin
directory), enter the following command:

scomp ïcompiler < path to extern al java compiler> - src < target dire ctory for

generated .java files > - d <target binary dire ctory for .class and .xsb files >

<xsd>

If you use Ant in your build, you can use the the XMLBean Ant task instead of scomp. You need
to download the xbean.jar from the XMLBeans developer kit at http://xmlbeans.apache.org/. The
build script will need to include a taskdef for xmlbean. Add the following code to the build script
to generate the classes for the schema:

https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us/fdggwsapi.xsd
https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us/fdggwsapi.xsd
https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us/a1.xsd
http://xmlbeans.apache.org/documentation/conInstallGuide.html
http://xmlbeans.apache.org/docs/2.0.0/guide/antXmlbean.html
http://xmlbeans.apache.org/

<taskdef name="xmlbean" classname="org.apache.xmlbeans.impl.tool.XMLBean"

classpath="path/to/xbean.jar"/>

<xmlbean schema=" <schema path> " srcgendir=" <source generation directory> "

classgendir=" <compiled class directory> " classpath="path/to/xbean.jar"/>

16.2.2.3 Writing the Client Program

The classes generated by XMLBeans allow your application work with Java objects instead of
XML.

The following code sample shows how to send an order request using Spring-WS.

// imports go here

public class FDGGWSAPIOrder extends WebServiceGatewaySupport {

 public FDGGWSAPIOrder(WebServiceMessageFactory messageFactory) {

 super(messageFactory);

 }

 public void ccSale(){

 try

 {

 // Insta ntiate the Order Request Document

 FDGGWSApiOrderRequestDocument orderRequestDoc =

FDGGWSApiOrderRequestDocument.Factory.newInstance();

 // Instantiate the Order Request

FDGGWSApiOrderRequest orderRequest =

orderRequestDoc.addN ewFDGGWSApiOrderRequest();

 // Instantiate Transaction Object

 Transaction tran = orderRequest.addNewTransaction();

 // Create the Request

 CreditCardTxType ccTxType = tran.addNewCreditCardTxType();

 CreditCardTxType.Type.Enum sale = CreditCardTxType.Type.SALE;

 ccTxType.setType(sale);

 CreditCardData ccData = tran.addNewCreditCardData();

 ccData.setCardNumber("4012000033330026");

 ccData.setExpMonth("12");

 ccData.setExpYear("09");

 tran.setCreditCardTxType(ccTxType);

 tran.setCreditCardData(ccData);

 Payment pp = tran.addNewPayment();

 BigDecimal bd = new BigDecimal("31.23");

 pp.setChargeTotal(bd);

 // Add the Request to the Transaction

 tran.setCreditCardTxType(ccTxType);

 tran.setCreditCardData(ccData);

 tran.setPayment(pp);

 // Add the Transaction to the Order Request

 orderRequest.setTransaction(tran);

 // Add the Order Request to the Order Request document

 orderRequestDoc.setFDGGWSApiOrderRequest(orderRequest);

 // Send the Request and ge t the Response

 FDGGWSApiOrderResponseDocument orderResponseDoc

=(FDGGWSApiOrderResponseDocument)getWebServiceTemplate().marshalSendAndRec

eive(orderRequestDoc);

 FDGGWSApiOrderResponseDocument.FDGGWSApiOrderResponse response =

orderResponseDoc.getFDGGWSApiOrderResponse();

 // Get the Response Results

 System.out.println("The result of Sale Transaction is

"+response.getTransactionResult());

 System.out.println("The Order Id of Sale Transaction is

"+response.getOrderId());

System.out.println("The TDate of Sale Transaction is

"+response.getTDate());

 System.out.println("The Error Message is "+response.getErrorMessage());

 }

 // Handling the Exception

 catch (SoapFaultClientException e)

 {

 System.out.print ln("The Exception is "+e.toString());

 SoapFault sf = e.getSoapFault();

 if(sf != null) {

 DOMSource s = (DOMSource)sf.getSource();

 if(sf.getFaultDetail() != null){

 Node detailNode = detailSource.getNode();

 if(detailNode.getLocal Name().

 equalsIgnoreCase("detail")) {

 System.out.println("The Fault Detail is "+detailNode.getTextContent());

 }

 }

 }

 }

 }

public static void main(String[] args) {

 // SSL Configuration for Client Certs

System.setProperty("javax.net.ssl.keyStore", "/SSL/WS111901._.1.ks");

 System.setProperty("javax.net.ssl.keyStorePassword", " q6DbysArx1 ");

 // Get the Application Context configuration

ApplicationContext applicationContext = new

ClassPathXmlApplication Context(

 "com/firstdata/fdggwsapi/client/applicationContext.xml");

FDGGWSAPIOrder fdggwsapiOrder = (FDGGWSAPIOrder)

applicationContext.getBean("fdggwsapiorder", FDGGWSAPIOrder.class);

 // FDGGWSAPI Order Sale Request

 fdggwsapiOrder.ccS ale();

}

}

16.2.2.4 Sending Direct XML Request

While object/XML mapping is the preferred method for using Spring-WS, if you must work
directly with the XML, that is also possible. The configuration discussed in the previous sections
for the applicationContext.xml file is not required.

The following code sample shows how to send an XML order request to the Web Service.

impo rt java.io.IOException;

import javax.xml.transform.Source;

import org.springframework.context.ApplicationContext;

import

org.springframework.context.support.ClassPathXmlApplicationContext;

import org.springframework.core.io.Resource;

import

org.springframework.ws.client.core.support.WebServiceGatewaySupport;

import org.springframework.xml.transform.ResourceSource;

import org .springframework.xml.transform.StringResult;

public class SpringClient extends WebServiceGatewaySupport {

 private Resource request;

 public void setRequest(Resource request) {

 this.request = request;

 }

 public void fdggwsapi() throw s IOException {

 Source requestSource = new ResourceSource(request);

 StringResult result = new StringResult();

 getWebServiceTemplate().sendSourceAndReceiveToResult

 (requestSource, result);

 System.out.println(result);

 }

 public static void main(String[] args) throws IOException {

 // SSL Configuration for Client Certs

 System.setProperty("javax.net.ssl.keyStore", "/SSL/WS111901._.1.ks");

 System.setProperty("javax.net.ssl.keyStorePassword", "q6DbysArx1");

 / / applicationContext.xml file contains the actual XML request.

 ApplicationContext applicationContext =

 new ClassPathXmlApplicationContext

 ("applicationContext.xml", SpringClient.class);

SpringClient springClient = (SpringClient)

applicationContext.getBean("springClient");

 springClient.fdggwsapi();

 }

}

The following code sample show the configuration required for the applicationContext.xml file:

<?xml vers ion="1.0" encoding="UTF - 8"?>

<FDGGWSApiOrderRequest

xmlns=" http:// secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi">

 <Transaction xmlns=

" http:// secure.linkpt.net / fdggwsapi/schemas_us /v1">

 <CreditCardTxType>

 <StoreId>111901</StoreId>

 <Type>sale</Type>

 </CreditCardTxType>

 <CreditCardData>

 <CardNumber>4012000033330028</CardNumber>

 <ExpYear>12</ExpYear>

 </CreditCardData>

 <Payment>

 <ChargeTotal>120.222</ChargeTotal>

 </Payment>

 </Transaction>

</FDGGWSApiOrderRequest>

16.2.3 SSL/Certificate Configuration

Your application must provide the client certificate for security.

As the server certificate is issued by a well-known and trusted authority, which is already listed in
the Trusted Store, you do not need to configure the server certificate.

The following code sample shows how to provide the keystore (.ks) file and password when
calling the web service.

// SSL Configuration for Client Certs

System.setProperty("javax.net.ssl.keyStore", "/SSL/WS111901._.1.ks");

System.setProperty("javax.net.ssl.keyStorePassword", " q6DbysArx1 ");

17 Customer Test Environment (CTE)

The Customer Test Environment (CTE) allows your Development team to test applications and
process transactions using the First Data Global Gateway Web Service API in a secure, no-cost
environment. The CTE mimics the production environment. There is not a setup fee or
processing charges when using the CTE.

To APPLY for a Test Account, access the following site, complete the form, and click Submit.
You will receive a Welcome Email within 24 hours

¶ http://www.firstdata.com/gg/apply_test_account.htm

To test your integration to the First Data Global Gateway Web Service API, use these URLs
listed below:

¶ https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/services/order.wsdl

¶ https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/services

¶ https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/schemas_us/fdggwsapi.xs
d

¶ https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/schemas_us/v1.xsd

¶ https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/schemas_us/a1.xsd

To assist you in testing the accuracy of your development efforts, a directory of CTE Response
Codes (AVS, CVM, SGS Error Codes) are located in the Appendix section of this document.
They are also located on the First Data Corp. Website.

¶ http://www.firstdata.com/en_us/customer-center/merchants/support/first-data-global-
gateway-api-software-landing#/content-product-1

To transition your test account to a production account replace the CTE URLs with these listed
below:

¶ https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us/fdggwsapi.xsd>

¶ https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us/v1.xsd>

¶ https://ws.firstdataglobalgateway.com/schemas_us/a1.xsd>

http://www.firstdata.com/gg/apply_test_account.htm
https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/services/order.wsdl
https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/services
https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/schemas_us/fdggwsapi.xsd
https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/schemas_us/fdggwsapi.xsd
https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/schemas_us/v1.xsd
https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/schemas_us/a1.xsd
https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us/fdggwsapi.xsd
https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us/v1.xsd
https://ws.firstdataglobalgateway.com/schemas_us/a1.xsd

18 The Tax Calculator

The Tax Calculator module calculates the state and municipal sales tax.

To use the tax calculator module, create a fulltax line in your configuration file on the secure
payment gateway. Next, send the fulltax line to Support in order to load it to the secure payment
gateway.

The fulltax line provides information needed for the tax module to calculate sales tax for an order.
The line includes entries for states where sales tax is charged. Entries are separated by a comma,
which may be followed by a space.

Example:

fulltax: TX 8.25, AL 7.00, FL 7.00, UT mun

Most entries in the list consist of the two-digit code for the state, followed by a space and the tax
rate charged for that state. See "U.S. State Codes" on page Error! Bookmark not defined. for
state codes.

TX 8.25

If the tax includes municipal tax, the listing is the two-digit state code followed by mun.

UT mun

Municipal taxes are calculated according to the salestax.txt file on the secure payment gateway
server. The salestax.txt file is updated monthly to ensure accuracy.

19 Shipping Calculator

With the shipping calculator, you can set rules for calculating shipping charges.

To use the shipping calculator module, you need to create a shipping and carrier file on the secure
payment gateway server. When you create your shipping file, send it to Support along with your
store number. The shipping calculator uses the shipping address and other information sent in the
shipping entity along with the appropriate pricing data defined in the shipping file to calculate the
charges.

The shipping file is a plain text file consisting of sets of code called zone type and zone definition
lines. An example of how these lines might appear in a shipping file is shown below.

zone type line

zone definition line

zone definition line

zone type line

zone definition line

The fields within both types of lines go together to define the shipping charges. The zone type line
describes the general shipping scheme, such as whether costs are based on item count, weight,
or price.

The zone definition line gives specific parameters on pricing for each element in that pricing
scheme. One or more zone definition lines must immediately follow each zone type line. Use
zone definition lines to set shipping prices based on specific geographic areas or types of carriers
to determine where price breaks occur. The fields within each line of code are separated by
double-colons. For fields with multiple values, use commas (countries, states) or single colons
(range definitions, prices).

Each zone type line is formatted with three fields:

¶ Tag Name

¶ Calculation Code

¶ Merchant-created range definitions

zone type::calculation method::range1:range2...

You can create as many zone type lines as you need for your business. You can use a separate
zone type line for:

¶ Different shipping-cost calculations, such as the total weight or total cost of an order

¶ Separate freight or air transport carrier methods

¶ Division of the world shipping-zone prices

19.1 Creating Zone Type Lines

To create zone type lines:

1. Enter the following tag name. The zone type line must precede two colons:

zone type::

2. Determine how to charge customers for shipping your products and enter an applicable
code number after the tag name followed by double colons with no spaces.

zone type::1::

zone type::3::

3. Create quantity ranges that share common pricing. Enter each range followed by a
single colon or a comma.

zone type::1::1 - 3,4 - 5,6+

zone type::3::1 - 24,25 - 50,51+

19.2 Calculation Method

There are five choices for calculating the shipping charges. Select the applicable calculation
methods for your business. Enter the code number after the Tag Name for each zone type line.

Method Description

1 Charges based on the total number of items

2 Charges based on each item, then totaled

3 Charges based on the total weight of the order

4 Charges based on the weight of each item, then totaled

5 Charges based on the total price of the order

19.3 Assigning Ranges

A range is defined as a value or a set of values representing all items within a predetermined
category, which use the same shipping charge. A range can be a single number, two numbers
separated by a hyphen, or a number followed by a plus sign. You can specify an infinite number of
ranges. The number of ranges in a zone type line must correlate exactly with the number of prices
in the zone definition lines.

The following restrictions apply:

¶ Range definitions must be contiguous - you cannot skip numbers.

¶ Range definitions must start with the integer 1.

¶ The last range defined in each line must end with +.

A zone definition line specifies data that is required by the preceding zone type line of code.
Several fields are specific to each business including the zone name, the shipping carrier code,
and the shipping-cost codes for each range. See the example below.

zone name::country::carrier::range cost::range co st

19.4 Creating Zone Definition Lines

To create zone definition lines:

1. Enter a zone name for each shipping situation followed by two colons.

northamerica::

2. Select the applicable countries for your zone name followed by double colons. Use the
two-digit country codes. See "Country Codes" on page Error! Bookmark not
defined..

northamerica::US,MX,CA::

For the U.S. only, enter each applicable two-letter state code after the country code,
followed by two colons.

westcoast::US::CA,OR,WA,HI::

3. Determine the different shipping methods for your business. Enter one merchant-
defined shipping carrier code only.

northamerica::US,MX,CA::1::

4. Determine the shipping cost for each range you specified in the zone type line. Enter
the applicable shipping cost, followed by a colon or a comma.

zone type::1::1 - 3,4 - 5,6+

northamerica ::US::MX::CA::1::25,40,75 NOTE:

Each shipping cost value in the zone definition line must match a range in the zone type line.

You determine the zone name for each zone definition line. Each name is an alphabetic string
containing less than 20 letters and cannot include blank spaces.

If you offer different types of shipping, such as courier, overnight, two day, or ground transport, the
zone definition line can list a shipping carrier option in the form of an integer. This will allow you to
charge different amounts for premium shipping services.

The zone definition contains the actual charges for shipping items in the range specified by the
preceding zone type. Merchants determine the charges for their products.

The following rules apply when you are creating zone definition code:

¶ If you are shipping internationally, the U.S. state code in a zone definition line is
ignored.

¶ If shipping prices are the same for all U.S. states, you do not need to name the states
individually.

¶ If you have a few exceptions for shipping, such as AK and HI, you can define a zone for
them and include the remaining states in a non-specific U.S. zone.

¶ Any number of zone definition lines may follow a zone type line.

¶ The zone name and range charges must have values; all other fields can be blank.

¶ When the shipping calculator looks for a shipping file match, a blank field, such as
carrier type, is treated as a match.

20 Troubleshooting

20.1 Merchant Exceptions

<detail>

 XML is not wellformed: Premature end of message.

</detail>

Explanation: You have sent an empty message. The message does not contain a SOAP
message or any other text in the HTTP body.

<detail>

 XML is not wellformed: Content is not allowed in prolog.

</detail>

Explanation: The First Data Global Gateway API cannot interpret the content as XML.

<detail>

 XML is not wellformed:

 XML document structures must start and end within the same entity.

</detail>

Explanation: Your SOAP message is missing the end tag of the first open tag.

<detail>

 XML is not wellformed:

 The element type "SOAP - ENV:Body" must be terminated

 by the matching end - tag "</SOAP - ENV:Body>".

</detail>

Explanation: An open internal tag (not the top level tag) is missing the end tag. In this example,
the end tag </SOAP-ENV:Body> is missing.

<detai l>

 XML is not wellformed:

 Element type "irgend" must be followed by either attribute

 specifications, ">" or "/>".

</detail>

Explanation: A tag is malformed. In this example, a ñ>ò character is missing for the tag irgend.

<detail>

 XML is not wel lformed:

 Open quote is expected for attribute "xmlns:ns3"

 associated with an element type "ns3: FDGGWSApiOrderRequest" .

</detail>

Explanation: The value of one attribute is not enclosed in quotation marks. In the Web Service
API, XML attributes are used only for the namespaces.

<detail>

 XML is not wellformed:

 The prefix " fdggws api" for element " fdggws api: FDGGWSApiOrderRequest"

 is not bound.

</detail>

Explanation: The name space fdggwsapi is not declared. To declare a name space use the
xmlns prefix. Add the following as an attribute to the FDGGWSApiOrderRequest or
FDGGWSApiAction request element:

xmlns:fdggwsapi=

http://secure.linkpt.net / fdggwsapi/schemas_us / fdggwsapi

<detail>

 XML is not wellformed:

 The prefix "xmln" for attribute "xmln:ns2" associated

 with an element type "ns3: FDGGWSApiOrderRequest" is not bound.

</detail>

Explanation: You must use the pre-defined namespace xmlns to declare a custom namespace.
In this example, the prefix is written as xmln and not as xmlns.

<detail>

 XML is not wellformed:

 Unable to create envelope from given source

 because the namespace was not recognized

</detail>

Explanation: The message could be interpreted as an XML message and the enclosing SOAP
message is correct, but the included API message in the soap body has no name spaces or the
name spaces are not declared correctly. The correct name spaces are described in the XSD.

<detail>

 XML is not wellformed:

 The processing instruction target matching "[xX][mM][lL]"

 is not allowed.

</detail>

Explanation: The SOAP body must not contain the XML declaration <?xml é ?>.

<detail>

 Unexpected characters before XML declaration

</detail>

Explanation: The XML must start with <?xml. Do not include an empty line or another white
space character in front of the XML.

<detail>

 XML is not a SOAP message:

 Unable to create envelope from given source

 because the root element is not named "Envelope"

</detail>

Explanation: The XML appears to be valid but is not a SOAP message. Enclose your message
in a SOAP envelope.

<detail>

 XML is not a valid SOAP message:

 Error with the determination of the type.

http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services

 Probably the envelope part is not correct.

</detail>

Explanation: The SOAP body tag is missing.

<detail>

 Source object passed to ''{0}'' has no conte nts.

</detail>

Explanation: The SOAP body is empty.

<detail>

 Included XML is not a valid FDGGWS API message:

 unsupported top level {namespace}tag "irgendwas" in the soap body. Only

one of [

{ http://secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi}FDGGWSApiActionRe

quest,

 { http://secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi}FDGGWSApiOrder

Request

] allowed.

</de tail>

Explanation: The first tag in the Web Service API message contained in the SOAP body must
be either FDGGWSApiActionRequest or FDGGWSApiOrderRequest. In this case, the tag has no
namespace.

<detail>

 Inc luded XML is not a valid FDGGWS API message:

unsupported top level {namespace}tag

"{ http://secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi}FDGGWSApiOrderRe

quest" in the soap body. Only one of [

{ http://secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi}FDGGWSApiActionRe

quest,

{ http://secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi}FDGGWSApiOrderReq

uest

] allow ed.

</detail>

Explanation: The first tag in the including Web Service API message contained in the SOAP
body must be either FDGGWSApiActionRequest or FDGGWSApiOrderRequest. In this case, the
namespace is wrong.

<detail>

 cvc - pattern - valid:

 Value '1.234' is not facet - valid with respect to pattern

'([1 - 9]([0 - 9]{0,12}))?[0 - 9](\ .[0 - 9]{1,2})?' for type

'#AnonType_ChargeTotalAmount'

 cvc - type.3.1.3:

 The value '1.234' of element 'ns3:ChargeTotal' is not valid.

</detail>

Explanation: The value of a tag does not correspond with the declaration in the XSD. The value
has three decimal places but the XSD only allows two.

<detail>

http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services
http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services
http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services
http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services
http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services

 cvc - complex - type.2.4.a:

 Invalid content was found starting with element 'ns2:ExpYear'.

 One of '{" http://secure.link pt.net / fdggwsapi/schemas_us /v1":ExpMonth}'

 is expected.

</detail>

Explanation: The tags must be included in the order declared in the XSD. In this case the tag
ExpMonth is expected and not ExpYear.

<fdggwsapi:FDGGWSApiOrderResponse Xmlns:fdggwsapi=

" http://secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi">

 <fdggwsapi:CommercialServiceProvider/>

 <fdggwsapi:TransactionTime>

 Tue Nov 03 13:34:02 2009

 </fdggwsapi:TransactionTime>

 <fdggwsapi:TransactionID/>

 <fdggwsapi:ProcessorReferenceNumber/>

 <fdggwsapi:ProcessorResponseMessage/>

 <fdggwsapi:ErrorMessage>

 SGS- 005002: The merchant is not setup to support the requested

service.

 </fdggwsapi:ErrorMessage>

 <fdggwsapi:OrderId>

 A- bf98ecb3 - c3f7 - 44e2 - 97cf - 5c965ca84f93

 </fdggwsapi:OrderId>

 <fdggwsapi:ApprovalCode/>

 <fdggwsapi:AVSResponse/>

 <fdggwsapi:TDate/>

 <fdggwsapi:TransactionResult>

 DECLINED

 </fdggwsapi:TransactionResult>

 <fdggwsapi:ProcessorResponseCode/>

 <fdggwsapi:ProcessorApprovalCode/>

 <fdggwsapi:CalculatedTax/>

 <fdggwsapi:CalculatedShipping/>

 <fdggwsapi:TransactionScore/>

 <fdggwsapi:AuthenticationResponseCode/>

</fdggwsapi:FDGGWSApiOrderResponse>

Explanation: The type of transaction submitted is not allowed for this merchant. If you receive
this result for a transaction type, which is included in your agreement, please contact our
technical support team.

<fdggwsapi:FDGGWSApiOrderResponse xmlns:fdggwsapi=

" http://secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi">

 <fdggwsapi:CommercialServiceProvider/>

 <fdggwsapi:TransactionTime>

 Tue Nov 03 17:10: 51 2009

 </fdggwsapi:TransactionTime>

 <fdggwsapi:TransactionID/>

 <fdggwsapi:ProcessorReferenceNumber/>

 <fdggwsapi:ProcessorResponseMessage/>

 <fdggwsapi:ErrorMessage>

 SGS- 005005: Duplicate transaction.

http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services
http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services
http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services

 </fdggwsapi:ErrorMessage>

 <fdggwsapi:OrderId>

 A- e981664e - 546f - 4db9 - 895b - 6633ee163f69

 </fdggwsapi:OrderId>

 <fdggwsapi:ApprovalCode/>

 <fdggwsapi:AVSResponse/>

 <fdggwsapi:TDate/>

 <fdggwsapi:TransactionResult>FRAUD</fdggwsapi:TransactionResult>

 <fdggwsapi:ProcessorResponseCode/>

 <fdggwsapi:Process orApprovalCode/>

 <fdggwsapi:CalculatedTax/>

 <fdggwsapi:CalculatedShipping/>

 <fdggwsapi:TransactionScore/>

 <fdggwsapi:AuthenticationResponseCode/>

</fdggwsapi:FDGGWSApiOrderResponse>

Explanation: This transaction is a duplicate transaction. Transactions with the same data
submitted within a configurable amount of time are rejected as duplicate transactions.

<fdggwsapi:FDGGWSApiOrderResponse xmlns:fdggwsapi=

" http://secure.linkpt.net / fd ggwsapi/schemas_us /fdggwsapi">

 <fdggwsapi:CommercialServiceProvider/>

 <fdggwsapi:TransactionTime>

 Tue Nov 03 14:07:13 2009

 </fdggwsapi:TransactionTime>

 <fdggwsapi:TransactionID/>

 <fdggwsapi:ProcessorRef erenceNumber/>

 <fdggwsapi:ProcessorResponseMessage/>

 <fdggwsapi:ErrorMessage>

 SGS- 002311: Internal Error.

 </fdggwsapi:ErrorMessage>

 <fdggwsapi:OrderId>

 A- 8a07eaad - 26d7 - 4233 - b13a - 8a102287f6c8

 </fdggwsapi:OrderId>

 <fdggwsapi:ApprovalCode/>< fdggwsapi:AVSResponse/>

 <fdggwsapi:TDate>1257286033</fdggwsapi:TDate>

 <fdggwsapi:TransactionResult>DECLINED</fdggwsapi:TransactionResult>

 <fdggwsapi:ProcessorResponseCode/>

 <fdggwsapi:ProcessorApprovalCode/>

 <fdggwsapi:CalculatedTax/>

 <fdggwsapi:Calc ulatedShipping/>

 <fdggwsapi:TransactionScore/>

 <fdggwsapi:AuthenticationResponseCode/>

</fdggwsapi:FDGGWSApiOrderResponse>

Explanation: The SOAP Request XML might be incorrect. Check for the correct namespaces
for the tags.

<fdggwsapi:FDGGWSApiOrderResponse xmlns:fdggwsapi=

" http://secure.linkpt.net / fdggwsapi/schemas_us /fdggwsapi">

 <fdggwsapi:CommercialServiceP rovider/>

 <fdggwsapi:TransactionTime>

 Tue Nov 03 17:10:51 2009

 </fdggwsapi:TransactionTime>

 <fdggwsapi:TransactionID/>

http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services
http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services

 <fdggwsapi:ProcessorReferenceNumber/>

 <fdggwsapi:ProcessorResponseMessage/>

 <fdggwsapi:ErrorMessage>

 SGS- 005999: There was an unknown error in the database.

 </fdggwsapi:ErrorMessage>

 <fdggwsapi:OrderId>

 A- e981664e - 546f - 4db9 - 895b - 6633ee163f69

 </fdggwsapi:OrderId>

 <fdggwsapi:ApprovalCode/>

 <fdggwsapi:AVSResponse/>

 <fdggwsapi:TDate/>

 <fdggwsapi:TransactionResult>DECLINED</f dggwsapi:TransactionResult>

 <fdggwsapi:ProcessorResponseCode/>

 <fdggwsapi:ProcessorApprovalCode/>

 <fdggwsapi:CalculatedTax/>

 <fdggwsapi:CalculatedShipping/>

 <fdggwsapi:TransactionScore/>

 <fdggwsapi:AuthenticationResponseCode/>

</fdggwsapi:FDGGWSApiOr derResponse>

Explanation: You may have tried to void a credit card transaction as a different payment type.

20.2 cURL Login Error Messages

* unable to set priv ate key file: 'C: \ API \ config \ WS120666668._.1 .key' type

PEM

* Closing connection #0

curl: (58) unable t o set private key file: 'C: \ API \ config \

WS120666668._.1 .key ô type PEM

Explanation: Your keystore and password do not match. Ensure that you used the right
keystore and password. Check that you used the WS<storeId>._.1.pem file. You can append
.cer to the file name so that you can open the certificate with a double click. The certificate must
be exposed for your store. Remove the extension .cer after the check.

<html>

 <head>

 <title>Apache Tomcat/5.5.20 - Error report</title>

 <style>

 ...

 </style>

 </head>

 <body>

 <h1>HTTP Status 401 - </h1>

 <HR size="1" noshade="noshade">

 <p>

 type

 Status report

 </p>

 <p>

 message

 <u></u>

 </p>

 <p>

 description

 <u>This request requires HTTP authentication ().</ u>

 </p>

 <HR size="1" noshade="noshade">

 <h3>Apache Tomcat/5.5.20</h3>

 </body>

</html>

Explanation: Your user ID and/or password are incorrect. The First Data Global Gateway Web
Service API accepted your certificates.

20.3 Java Client Login Error Messages

java.io.IOException: Keystore was tampered with, or password was incorrect

Explanation: Your keystore password does not match. You can check the password with the
keytool of the JDK. Password is case sensitive. Run the following command:

keytool - list - v - keystore < absolute path of your WS{store_id}._.1.ks

keystore > - storepass <your keystore password>

javax.net.ssl.SSLHandshakeException:

sun.security.validator.ValidatorException: No trusted certificate found

Check the cacerts file is available under {JAVA_HOME}/jre/lib/security folder

21 Installing the Client Certificate

The following instructions assume you are running ASP on Microsoft IIS 5.1 on Windows XP. To
install the client certificate, follow these steps:

1. Select Run from the Start menu. Enter mmc in the Run dialog and click OK.
2. From the File menu, select Add/Remove Snap-In.

3. Click Add.

4. Under Snap-In, select Certificates and click Add.

5. Select the account for which you want to manage the certificates. Since IIS uses the
computer account, choose Computer Account and click Next.

6. Choose Local Computer and click Finish.

7. Click Close and then OK.
8. Expand the Certificates (Local Computer) tree. The client certificate will be installed in

the Personal folder.
9. Right click the Certificates folder, select All Tasks, and click Import. The Certificate

Import Wizard displays.

10. Click Next.

11. Choose your client certificate p12 file and click Next.

12. Enter the client certificate installation password and click Next.

13. Select Place all certificates in the following store and browse for the Personal folder
if not yet displayed. Click Next.

14. Check the displayed settings and click Finish. Your client certificate is now installed in
the local computerôs personal certificates store. Now, IIS (running ASP) can find the client
certificate when communicating with another server via HTTP.

Next-

¶ Grant the IIS user access to the client certificate private key. To do so, first download the
WinHttpCertCfg tool from Microsoft. Use the following URL:

http://www.microsoft.com/downloads/details.aspx?familyid=c42e27ac-3409-40e9-
8667-c748e422833f&displaylang=en

¶ Grant access to the IIS user, using the command line, navigate to the directory where you
installed WinHttpCertCfg and enter the following command:

winhttpcertcfg -g -c LOCAL_MACHINE\My -s WS101._.1 -a IWAM_MyMachine

WS101._.1 is the name of the client certificate.

¶ Replace this value with the name of your client certificate. The name should be in the
format WS<store_ID>._.1.

¶ Verify this value when you install the client certificate using the instructions above.

IWAM_MyMachine is the IIS user name. IIS 5.1 uses IWAM_MachineName by default. Replace

MachineName with the name of your machine. For example, if your machine has the name

IISServerMachine, the IIS user will be called IWAM_IISServerMachine . Other IIS versions might

use a different naming scheme. If you do not know your machine name or IIS user name, check
the IIS documentation and contact your administrator.

22 Glossary

Account Number
The account number for a checking or savings account is a unique number that identifies the
customer's account. The account number appears on the check next to the transit routing
number. The numbers are usually separated by a non-alphabetic, non-numeric symbol.

ACH
ACH is an abbreviation for Automated Clearing House. Automated Clearing House (ACH) is the
name of an electronic network for financial transactions in the United States. ACH processes
large volumes of both credit and debit transactions which are originated in batches. ACH allows
merchants to accept payments from a customer's checking or savings account.

Acquiring Bank
An acquiring bank is a bank, which provides a service to its business customers allowing them to
accept card payments for goods and services.

Address Verification System
The Address Verification System (AVS) is a system that checks the billing address of the credit
card provided by the user with the address on file at the credit card company. The gateway
provides an AVS code in each approved transaction result that tells you how well the two
addresses match. If they match, there is a lower probability of fraud if there is a discrepancy in
either the address or zip code; the probability of fraud is higher. Merchants can use AVS codes
to help protect themselves from chargebacks and fraud.

Antivirus Software
Antivirus software consists of computer programs that attempt to identify, deter, and eliminate
computer viruses and other malicious software. Antivirus software typically uses two different
techniques to accomplish this: Examining (scanning) files to look for known viruses matching
definitions in a virus dictionary. Identifying suspicious behavior from any computer program,
which might indicate infection. Such analysis may include data captures, port monitoring, and
other methods. Because of the risk of computer viruses doing harm to your computer files,
antivirus software is recommended for all Internet users.

Application Programming Interface (API)
First Data Global Gateway API is a tool that allows a merchant to create a customer commerce
solution. Our Application Programming Interface (API) allows you to add payment functionality
to custom built web sites or online applications.

Authorization
Performing an authorization reserves funds on a customer's credit card. An authorization does
not charge the card until you perform a Ticket Only transaction or confirm shipment of the order.
The period during which funds are reserved may be as little as three days or as long as several
months.

Authorize Only (PreAuth)
An Authorize Only transaction reserves funds on a customer's credit card. An Authorize Only
transaction does not charge the card until you perform a Ticket Only transaction and confirm
shipment of the order using an option available in the Reports section. Authorize-
only transactions reserve funds for varying periods, depending on the issuing credit card
company's policy. The period may be as little as three days or as long as several months. For
your protection, you should confirm shipment as soon as possible after authorization.

Batch
A group of credit card or check transactions that are submitted together to the payment gateway
for settlement. On the payment gateway, batches are submitted automatically once a day.

Blocking and Limiting
If you suspect certain transactions might be fraudulent, you can block further purchases by
blocking credit card numbers, persons' names, domain names, and IP addresses or Class C
addresses from purchasing at your store. You can limit the amount that any customer can
spend at your store by setting a maximum purchase amount. You can set how long automatic
lockouts and duplicate lockouts will continue to be blocked.

Browser
Short for web browser, a browser is a software application that enables a user to display and
interact with text, images, videos, music, and other information typically located on a web page
at a web site on the Internet.

Cable Modem
A cable modem is a type of modem that provides access to the Internet through the cable
television infrastructure. Cable modems are primarily used to deliver broadband Internet access,
taking advantage of unused bandwidth on a cable television network. If the cable network is
shared with many other Internet subscribers, Internet access speed may go down.

Card Code
The card code is the card security code, sometimes called Card Verification Value or Code (CVV
or CVC). It is a security feature for credit or debit card transactions, giving increased protection
against credit card fraud This code (also known as a CCID or Credit Card ID) is often asked for
by merchants to secure transactions when the card is not present, usually occurring over the
Internet, by mail, fax, or over the phone. The payment gateway will compare the card code with
the code on file at the card-issuing bank. Results of this comparison will show in the transaction
approval code. Using the card code results in conjunction with the Address Verification Service
(AVS), you can make better-informed decisions about whether to accept transactions.
MasterCard, Visa, and Discover credit and debit cards have a three-digit code, called the
"CVC2" (card validation code), "CVV2" (card verification value), and "CID" (card identification
number), respectively. It is always the final group of numbers printed on the back signature
panel of the card. New North American MasterCard and Visa cards feature the card code in a
separate panel to the right of the signature strip. American Express cards have a four-digit code
printed on the front side of the card above the number, referred to as the CID.

Card-Issuing Bank
A financial institution or bank that issues a credit, debit, or purchasing card to a business or an
individual. The card-issuing bank has an address on file for the card, which the Address
Verification System (AVS) compares to the address given to the merchant.

Chargeback
A chargeback is a forced refund to the customer through your bank account. Chargebacks can
occur with any type of business whether it is online or at an actual store location. Each
fraudulent credit card transaction typically results in a chargeback. Credit card associations
penalize merchant banks for chargebacks. Naturally, the bank passes the fines on to the
responsible merchant, and these penalties can be severe. While consumers are provided with a
certain degree of protection if their credit card numbers are stolen and misused, Internet
merchants are fully liable for all transactions because Internet transactions are classified as
"card-not-present."

Check Number
The check number is a number unique to each check. The check number is always found in the
top right corner of the check. The check number is only provided as a reference to process the
ACH transaction.

Commerce Service Provider (CSP)
The commerce service provider (CSP) supplies businesses with the tools and services they
need to buy and sell products and services over the Internet, and to manage their online
enterprises. CSPs can generally host a secure web site that could be connected to a secure
payment gateway for selling products or services over the Internet.

Credit
A Credit transaction returns funds to a customerôs credit card on orders without an order number.
This transaction is intended for returns against orders processed outside the system. Credit
transactions are marked as Returns in your reports.

Credit Card
A credit card is a card (usually plastic) that assures a seller that the person using it has a
satisfactory credit rating, and that the issuer will see to it that, the seller receives payment for the
merchandise delivered.

CVC2
The CVC2 is the card validation code or card code for MasterCard. See the definition for card
codes for more information.

CVV2
The CVC2 is the card verification value or card code for Visa cards. See the definition for card
codes for more information.

Data Field
A data field is an area on a web form or software application where you can enter information
relevant to the name of the field. For example, you would enter the zip code in the data field
named zip code.

DDA Number
The DDA (demand deposit account) number is the deposit account held at a bank or other
financial institution for the purpose of securely and quickly providing frequent access to funds on
demand.

Dial-Up Connection
A dial-up connection is a way to access the Internet through a telephone line. A modem is
connected to a computer and a telephone line to dial into an Internet service provider's (ISP)
node to establish a modem-to-modem link, which is then routed to the Internet. The speed of
dial up connections is usually slower than other Internet access options.

Digital Certificate
A digital certificate is an electronic certificate that establishes the merchant's credentials for
performing business on the Internet. It is an encrypted set of information issued by an Internet
certification authority such as Thawte. Digital certificates are required for merchants who choose
to use the API. For other products, the merchant does not need a digital certificate.

Domain Name
A name that identifies a computer or computers on the internet. These names appear as a
component of a web site's URL, such as microsoft.com. This type of domain name is also called
a hostname.

DSL
DSL (Digital Subscriber Line) is a technology for bringing fast Internet service to homes and
small businesses over the wires of a local telephone network.

E-commerce (ECI)
E-commerce (ECI) or electronic commerce consists of the buying and selling of products or
services over electronic systems, such as the Internet and other computer networks.

Electronic Check Acceptance (ECA)
With electronic check acceptance (ECA), the check is electronically submitted as a check. The
check is no longer usable and the paper check must be voided. The customer signs and
receives a paper receipt. ECA services may include a check guarantee service. ECA is used
for retail payments only.

Field
A field is an area on a web form or software application where you can enter information relevant
to the name of the field. For example, you would enter the zip code in the field named zip code.

Firewall
A firewall is a hardware or software device, which is configured to permit, deny, or proxy data
through a computer network which has different levels of trust. A firewall protects the resources
of a private network from users of other networks.

First Data Global Gateway Connect
The First Data Global Gateway Connect service is an e-Commerce solution using a hosted
payment page. This eliminates some of the complexity and is great for a merchant with limited
resources or expertise.

Forced Ticket
A Forced Ticket transaction is a credit card transaction for authorizations you obtained over the
phone. It requires a reference number (or approval code) that you should have received when
you made the phone authorization.

Hierarchy
A term used to describe the organizational tree structure for multi-store reports. Merchants
describe their organization by defining an org chart in the form of a tree structure. The structure
is used for combining store reports into groups at different levels. The term hierarchy refers to
the entire organizational tree structure containing levels and elements.

HTML
HTML is short for HyperText Markup Language. HTML is a markup language used to structure
text and multimedia documents and to set up hypertext links between documents used
extensively on the Internet. Other than manually entering transactions using the virtual POS
terminal, HTML is the simplest way to send payment transactions to the payment gateway.

HTTP
HTTP (Hypertext Transfer Protocol) is a communications protocol used to transfer or convey
information on the Internet. For example, when you enter a URL in your browser, it sends an
HTTP command to the web server directing it to receive and transmit the requested web page.

Hyperlink
A hyperlink is a reference or navigation element in a document or web page linking to another
section of the same document or web page or to another document or web page that may be on
a different web site.

Internet Check Acceptance (ICA)
Internet Check Acceptance (ICA) is the type of check service provided on the payment gateway.
ICA uses the Automated Clearing House (ACH) to transfer funds from the customerôs account.
The account information is entered in an online payment form, and no check is used. The
customer may or may not sign a payment form. In either case, the merchant needs a
documented record of the customer's authorization to transfer funds from the account. ICA
includes an electronic receipt. There is no check guarantee service with ICA. ICA is typically
used for mail orders/telephone orders (MO/TO) or e-commerce transactions, but may also be
used for retail.

Internet Service Provider (ISP)
An Internet service provider (ISP) is a business or organization that provides consumers or
businesses access to the Internet and related services. An ISP can also host a web site.

IP Address
IP address is short for Internet Protocol address. An IP address is a number that is used to
identify a specific computer on a network or on the Internet. The format of an IP address is
written as four numbers separated by periods. Each number can be from zero (0) to 255. For
example, 1.160.10.240 could be an IP address.

Issuing Bank
The financial institution or bank that issues a credit, debit, or purchasing card to a business or
consumer. The issuing bank has an address on file for the card, which the Address Verification
System (AVS) compares to the address given to the merchant.

Level
A level is a single tier in the hierarchy or organizational tree structure for multi-store users. The
top level (1) is typically the root (or corporate) level containing one (1) element. The lowest level
of the tree is always the User level; the next level up from the lowest is the Store level.
Merchants define the number of levels and names of each level for their own organization up to
10 total levels.

Local Area Network (LAN)
A local area network (LAN) is a computer network covering a small geographic area, like a
home, office, or group of buildings. The defining characteristics of LANs, in contrast to Wide
Area Networks (WANs), include their much higher data transfer rates, smaller geographic range,
and lack of a need for leased telecommunication lines.

Log In
To log in is the process by which individual access to a computer system is controlled by
identification of the user in order to obtain credentials to permit access. It is an integral part of
computer security. A user can log in to a system to obtain access, and then log out when the
access is no longer needed.

Log Off
To log off (aka to log out, sign out, or sign off) is to close off one's access to a computer system
after previously having logged in. To log out of the system, click the Logout link in the top right
corner of the application. To prevent unauthorized users from accessing their account,
merchants should always log off and close the browser window when they are finished using the
system.

Multi-Store
Multi-stores are multiple accounts with different store numbers.

Network
A network is a group of two or more computer systems linked together.

OrderID
A number assigned to a transaction. You can manually enter a number in this field to assign a
proprietary number to the transaction. All OrderID numbers are unique. If you do not enter a
number in this field, the FDGG Virtual Terminal automatically generates an OrderID number.
The First Data Global Gateway Web Service API only accepts ASCII characters. The OrderID
field cannot contain the following characters: &, %, or /, or exceed 100 characters in length.

Password
A password is a form of secret authentication data that is used to control access to a resource.
It is recommend that users change their password frequently and do not share it with anyone to
prevent unauthorized access to their accounts.

Payment Gateway
A payment gateway is an e-commerce application service that authorizes payments for e-
businesses and online retailers. It is the equivalent of a physical POS (Point-of-sale) terminal
located in most retail outlets. Payment gateways encrypt sensitive information, such as credit
card numbers, to ensure that information passes securely between the customer and the
merchant.

PDF File
PDF is short for Portable Document Format. It is the file format created by Adobe Systems in
1993 for document exchange. PDF is used for representing two-dimensional documents in a
device-independent and display resolution-independent fixed-layout document format. Internet
users need an Adobe Acrobat viewer to open a PDF file, which can be downloaded free at
http://www.adobe.com.

Periodic Billing (Recurring Billing)
Periodic billing is recurring payments or the capability to charge customers on a recurring basis
according to merchant-defined rules. Gateway products allow a merchant to charge a
customer's card in exchange for products and services one or more times every day, week,
month, or year.

Plug-In
A plug-in is a hardware or software module that adds a specific feature or service to a larger
system. For example, a number of plug-ins for the Mozilla Firefox browser, enable it to display
different types of audio or video files.

Point of Sale (POS)
Point of Sale (POS) - purchasing a product from the merchant and the merchant is processing
the payment transaction. POS is commonly used to refer to the payment terminals or software
merchants use to process the payment transaction.

Protocol
A Protocol is a set of guidelines or rules that help in governing an operation on the Internet and
communications over it. There are several different protocols. HTTP is the protocol used for the
Internet.

Purchasing Card
A purchasing card is a corporate card used by some companies for their business purchases.
When a customer pays for goods or services using a purchasing card, the following information
must be included with the order information. This information is optional for a regular credit card
transaction: An indication of whether the order is tax exempt. The amount of tax applied to the
order. If the order is tax exempt, the tax amount should be zero. A purchase order number
associated with the order. One purchase order can apply to several individual orders to allow for
delivery of goods over time. If there is not a purchase order associated with the order, the
customer must supply some value for the order.

Recurring Payment (Periodic Billing)
The capability to charge customers on a recurring basis according to merchant-defined rules.
Gateway products allow a merchant to charge a customer's card in exchange for products and
services one or more times every day, week, month, or year.
Return
A Return transaction returns funds to a customerôs credit card for an existing order on the
system. To perform a return, you need the order number (which you can find in your reports).
After you perform a Return for the full order amount, the order will appear in your reports with a
transaction amount of 0.00.

Sale
A sale transaction immediately charges a customer's credit card when the batch of transactions
is closed.

Secure Shell (SSH)
Secure Shell (SSH) is a network protocol that allows data to be exchanged over a secure
channel between two computers.

Secure Sockets Layer (SSL)
Secure Sockets Layer (SSL) is cryptographic protocols that provide secure communications on
the Internet, such as transmitting credit card data and other data transfers.

Settlement
Settlement is the completion of a payment transaction. When a transaction is settled, it has
been funded and the monies deposited in the merchant account.

Store Name
The store name (also called storename or store number) is a six to ten-digit number needed to
identify the merchant. The store name is given to the merchant in the Welcome E-mail.
Merchants need the store name, user ID, and password to access the Virtual POS Terminal, as
well as reports, admin, and customization functions. The store name is also needed for using
the API and other products.

Ticket Only (PostAuth)
A Ticket Only transaction is a post-authorization transaction that captures funds from an
Authorize Only transaction. Funds are transferred when your batch of transactions is settled. If
you enter a larger total for the Ticket Only transaction than was specified for the Authorize Only
transaction, the Ticket Only transaction may be blocked. If you enter a smaller amount than was
authorized, an adjustment is made to the Authorization to reserve only the smaller amount of
funds on the customerôs card for the transaction.

Transit Routing Number
A transit routing number is a nine-digit bank code, used in the United States, which appears on
the bottom of checks. This code is used by the Automated Clearing House to process direct
deposits and other automated transfers.

URL
URL is short for Uniform Resource Locator. The URL is the address for documents and other
pages on the Internet. The first part of the address indicates what protocol to use, and the
second part specifies the IP address or the domain name where the resource is located.

User ID
For accounts with multiple users, each individual user will be assigned a User ID. The user will
need this User ID, along with the store name and password, to log in to the system.

Virtual
Virtual is often used on the Internet to denote a web-based program that functions similarly to a
physical device or system. For example, a virtual point-of-sale terminal is a computer program
that performs the same functions as a physical point-of-sale terminal.

Void
To void a transaction is to cancel a payment transaction. Merchants can void transactions prior
to settlement. Once the transaction has settled, the merchant has to perform a return or credit to
reverse the charges and credit the customer's card.

WAN
A WAN is a wide-area computer network that spans a relatively large geographical area.
Typically, a WAN consists of two or more local-area networks (LANs). Computers connected to
a wide-area network are often connected through public networks, such as the telephone
system. They can also be connected through leased lines or satellites.

Web Server
A web server is a computer program responsible for accepting HTTP requests from clients and
serving HTTP responses along with optional data contents. The responses are usually web
pages, such as HTML documents and linked objects (images, etc.).

XML
XML is the Extensible Markup Language, which is a universal format for the representation of
documents and data. It is classified as an extensible language because it allows its users to
define their own tags. Its primary purpose is to facilitate the sharing of structured data across
different information systems, particularly through the Internet.

© 2010 First Data Corp. All rights reserved.

